
MATLAB® Coder™

User’s Guide

R2012a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Coder™ User’s Guide

© COPYRIGHT 2011–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for Version 2 (R2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

About MATLAB Coder

1
Product Description . 1-2
Key Features . 1-2

Product Overview . 1-3
When to Use MATLAB® Coder™ . 1-3
Code Generation for Embedded Software Applications . . . 1-3
Code Generation for Fixed-Point Algorithms 1-4

Code Generation Workflow . 1-5
See Also . 1-5

Bug Reports

2
Check Bug Reports for Latest Issues and Fixes 2-2

Setting Up a MATLAB® Coder™ Project

3
MATLAB® Coder™ Project Set Up Workflow 3-2

Creating a New Project . 3-3

Opening an Existing Project . 3-5

Adding Files to the Project . 3-6

iii

Specifying Properties of Primary Function Inputs in a
Project . 3-7
Why You Must Specify Input Properties 3-7
How to Specify an Input Definition in a Project 3-7

Autodefining Input Types . 3-8
How MATLAB Coder Autodefines Input Types 3-8
Prerequisites for Autodefining Input Types 3-8
How to Autodefine Input Types . 3-8

Defining Input Parameters by Example in a Project . . 3-12
How to Define an Input Parameter by Example 3-12
Specifying Input Parameters by Example 3-13
Specifying an Enumerated Type Input Parameter by
Example . 3-14

Specifying a Fixed-Point Input Parameter by Example . . . 3-14

Defining or Editing Input Parameter Type in a
Project . 3-16
How to Define or Edit an Input Parameter Type 3-16
Editing a Fixed-Point Input Parameter Type 3-21
Specifying Structures . 3-25

Defining Constant Input Parameters in a Project 3-29

Defining Inputs Programmatically in the MATLAB
File . 3-30

Adding Global Variables in a Project 3-31

Specifying Global Variable Type and Initial Value in a
Project . 3-32
How to Specify a Global Variable Type 3-32
Defining a Global Variable by Example 3-33
Defining or Editing Global Variable Type 3-34
Defining Global Variable Initial Value 3-36
Renaming Global Variables . 3-36
Inserting Global Variables . 3-36
Removing Global Variables . 3-37

iv Contents

Output File Name Specification . 3-38
Command Line Alternative . 3-38

Specifying Output File Locations 3-39
Command Line Alternative . 3-39

Selecting Output Type . 3-40
Command Line Alternative . 3-40
Changing Output Type . 3-40

More About . 3-44

Preparing MATLAB Code for C/C++ Code
Generation

4
Preparing MATLAB Code for C/C++ Code Generation
Workflow . 4-2
See Also . 4-3

Fixing Errors Detected by the Code Analyzer 4-4
See Also . 4-5

How to Generate MEX Functions Using the MATLAB®

Coder™ Project Interface . 4-6
Workflow . 4-6
Generating a MEX Function Using the Project Interface . . 4-6
Generating Code Only . 4-9
Configuring Project Settings . 4-10
Building a MATLAB® Coder™ Project 4-11
See Also . 4-12

How to Generate MEX Functions at the Command
Line . 4-13
Workflow for Generating MEX Functions at the Command
Line . 4-13

Generating a MEX Function at the Command Line 4-13

v

Generating MEX Functions at the Command Line Using
codegen . 4-14

See Also . 4-14

Fixing Errors Detected at Code Generation Time 4-15
See Also . 4-15

Design Considerations When Writing MATLAB Code
for Code Generation . 4-16
See Also . 4-17

Running MEX Functions . 4-18

Debugging Strategies . 4-19

Testing MEX Functions in MATLAB

5
Workflow for Testing MEX Functions in MATLAB 5-2
See Also . 5-2

Why Test MEX Functions in MATLAB? 5-4

Running MEX Functions . 5-5

How to Verify MEX Functions in a Project 5-6
Using Test Files That Call Only MATLAB Functions 5-6
Using Test Files That Call MEX Functions 5-7

How to Verify MEX Functions at the Command Line . . 5-9

Debugging Run-Time Errors . 5-10
Viewing Errors in the Run-Time Stack 5-10
Handling Run-Time Errors . 5-12

vi Contents

Generating C/C++ Code from MATLAB Code

6
Code Generation Workflow . 6-3
See Also . 6-4

C/C++ Code Generation . 6-5
Specifying Custom Files to Build . 6-5

Generating C/C++ Static Libraries from MATLAB
Code . 6-7
Generating a C Static Library Using the Project
Interface . 6-7

Generating a C Static Library at the Command Line 6-8

Generating C/C++ Dynamically Linked Libraries from
MATLAB Code . 6-9
About Dynamic Libraries Generated by MATLAB®

Coder™ . 6-9
Generating a C Dynamically Linked Library (DLL) Using
the Project Interface . 6-9

Generating a C Dynamic Library at the Command Line . . 6-11

Generating Standalone C/C++ Executables from
MATLAB Code . 6-13
Generating a C Executable Using the Project Interface . . . 6-13
Generating a C Executable at the Command Line 6-15
Specifying main Functions for C/C++ Executables 6-17
How to Specify main Functions . 6-17

Build Setting Configuration . 6-19
Output Type Specification . 6-19
Specifying a Language for Code Generation 6-22
Output File Name Specification . 6-24
Specifying Output File Locations . 6-25
Parameter Specification Methods . 6-26
How to Specify Build Configuration Parameters 6-26

Primary Function Input Specification 6-34
Why You Must Specify Input Properties 6-34

vii

Properties to Specify . 6-34
Rules for Specifying Properties of Primary Inputs 6-38
Methods for Defining Properties of Primary Inputs 6-39
Defining Input Properties by Example at the Command
Line . 6-40

Defining Input Properties Programmatically in the
MATLAB File . 6-46

Speeding Up Compilation . 6-57
Generate Code Only . 6-57
Disable Compiler Optimization . 6-57

Code Optimization . 6-59
Unrolling for-loops . 6-59
Inlining Code . 6-61
Eliminating Redundant Copies of Function Inputs
(A=foo(A)) . 6-62

Rewriting Logical Array Indexing as a Loop 6-64

Paths and File Infrastructure Setup 6-65
Compile Path Search Order . 6-65
Specifying Folders to Search for Custom Code 6-65
Naming Conventions . 6-66

Code Generation for More Than One Entry-Point
MATLAB Function . 6-71
Advantages of Generating Code for More Than One
Entry-Point Function . 6-71

Generating Code for More Than One Entry-Point Function
Using the Project Interface . 6-71

Generating Code for More Than One Entry-Point Function
at the Command Line . 6-74

How to Call an Entry-Point Function in a MEX Function . . 6-76
How to Call an Entry-Point Function in a C/C++ Library
Function from C/C++ Code . 6-76

Code Generation for Global Data . 6-78
Code Generation Workflow . 6-78
Declaring Global Variables . 6-78
Defining Global Data . 6-79
Synchronizing Global Data with MATLAB 6-80
Limitations of Using Global Data . 6-84

viii Contents

Generation of Traceable Code . 6-85
About Code Traceability . 6-85
Generating Traceable Code . 6-86
Format of Traceability Tags . 6-88
Location of Comments in Generated Code 6-88
Traceability Limitations . 6-93

Code Generation for Enumerated Types 6-94

Code Generation for Variable-Size Data 6-95
Enabling and Disabling Support for Variable-Size Data . . 6-95
Controlling Dynamic Memory Allocation 6-96
Generating Code for MATLAB Functions with Variable-Size
Data . 6-98

Generating Code for a MATLAB Function That Expands a
Vector in a Loop . 6-101

Using Dynamic Memory Allocation for an "Atoms"
Simulation . 6-107

Code Generation for MATLAB Classes 6-114

How MATLAB® Coder™ Partitions Generated Code . . 6-115
Partitioning Generated Files . 6-115
How to Select the File Partitioning Method 6-115
Partitioning Generated Files with One C/C++ File Per
MATLAB File . 6-116

Generated Files and Locations . 6-122
File Partitioning and Inlining . 6-124

Customizing the Post-Code-Generation Build
Process . 6-129
Workflow for Customizing Post-Code-Generation Builds . . 6-129
Build Information Object . 6-129
Build Information Functions . 6-130
Programming a Post-Code-Generation Command 6-165
Using a Post-Code-Generation Command in Your Build . . 6-166
Example: Programming and Using a Post-Code-Generation
Command at the Command Line 6-168

Code Generation Reports . 6-169
About Code Generation Reports . 6-169

ix

How to Enable Code Generation Reports 6-172
Viewing Your MATLAB Code in a Report 6-173
Viewing Call Stack Information . 6-174
Viewing Generated C/C++ Code in a Report 6-176
Viewing the Build Summary Information 6-176
Viewing Error and Warning Messages in a Report 6-177
Viewing Variables in Your MATLAB Code 6-178
Viewing Target Build Information . 6-184
Keyboard Shortcuts for the Code Generation Report 6-185
Report Limitations . 6-185

Troubleshooting . 6-187
Runtime Stack Overflow . 6-187

Deploying Generated Code

7
Calling a C Static Library Function from C Code 7-2

Calling a C/C++ Static Library Function from MATLAB
Code . 7-4

Calling Generated C/C++ Functions 7-6
Conventions for Calling Functions in Generated Code 7-6
How to Call C/C++ Functions from MATLAB Code 7-6
Calling Initialize and Terminate Functions 7-7
Calling C/C++ Functions with Multiple Outputs 7-8
Calling C/C++ Functions that Return Arrays 7-8

Using a MATLAB® Coder™ Dynamic Library in a
Simple Microsoft® Visual Studio® Project 7-9

Custom C/C++ Code Integration . 7-12
About Custom C/C++ Code Integration with MATLAB®

Coder™ . 7-12
Specifying Custom C/C++ Files in the Project Settings
Dialog Box . 7-12

Specifying Custom C/C++ Files at the Command Line 7-13

x Contents

Specifying Custom C/C++ Files with Configuration
Objects . 7-13

Accelerating MATLAB Algorithms

8
Workflow for Accelerating MATLAB Algorithms 8-2
See Also . 8-3

How to Accelerate MATLAB Algorithms 8-4

Modifying MATLAB Code for Acceleration 8-5
How to Modify Your MATLAB Code for Acceleration 8-5
Unrolling for-loops . 8-5
Inlining Code . 8-7
Eliminating Redundant Copies of Function Inputs
(A=foo(A)) . 8-8

Speeding Up MATLAB Algorithms with the Basic
Linear Algebra Subprograms (BLAS) Library 8-11
How MATLAB Uses the BLAS Library for MEX Code
Generation . 8-11

How to Use the BLAS Library for C/C++ Code
Generation . 8-11

When to Disable BLAS Library Support 8-12
How to Disable BLAS Library Support 8-12
Supported Compilers . 8-13

Controlling Run-Time Checks . 8-14
Types of Run-Time Checks . 8-14
When to Disable Run-Time Checks 8-15
How to Disable Run-Time Checks . 8-15

Accelerating Simulation of Bouncing Balls 8-17

xi

Calling C/C++ Functions from Generated Code

9
MATLAB® Coder™ Interface to C/C++ Code 9-2
How to Call C/C++ Code from Generated Code 9-2
Why Call C/C++ Functions from Generated Code? 9-2
Calling External C/C++ Functions . 9-3
Passing Arguments by Reference to External C/C++
Functions . 9-3

Declaring Data . 9-5

Calling External C/C++ Functions 9-7
Workflow for Calling External C/C++ Functions 9-7
Best Practices for Calling C/C++ Code from Generated
Code . 9-8

Returning Multiple Values from C Functions 9-9

How MATLAB® Coder™ Infers C/C++ Data Types 9-10
Mapping MATLAB Types to C/C++ 9-10
Mapping embedded.numerictypes to C/C++ 9-11
Mapping Arrays to C/C++ . 9-12
Mapping Complex Values to C/C++ 9-12
Mapping Structures to C/C++ Structures 9-13
Mapping Strings to C/C++ . 9-13

Examples

A
Generating MEX Functions . A-2

Generating Static C/C++ Libraries A-3

Generating C/C++ Dynamic Libraries A-4

Generating C/C++ Executables . A-5

xii Contents

Specifying Inputs . A-6

Optimizing Generated Code . A-7

Generating Code for Variable-Size Data A-8

Calling C/C++ Code from MATLAB Code A-9

Index

xiii

xiv Contents

1

About MATLAB Coder

• “Product Description” on page 1-2

• “Product Overview” on page 1-3

• “Code Generation Workflow” on page 1-5

1 About MATLAB Coder

Product Description
Generate C and C++ code from MATLAB® code

MATLAB Coder™ generates standalone C and C++ code from MATLAB code.
The generated source code is portable and readable. MATLAB Coder supports
a subset of core MATLAB language features, including program control
constructs, functions, and matrix operations. It can generate MEX functions
that let you accelerate computationally intensive portions of MATLAB code
and verify the behavior of the generated code.

Key Features

• ANSI/ISO compliant C and C++ code generation

• MEX function generation for fixed-point and floating-point math

• Project management tool for specifying entry points, input data properties,
and other code-generation configuration options

• Static or dynamic memory allocation for variable-size data

• Code generation support for many functions and System objects in
Communications System Toolbox™, DSP System Toolbox™, and Computer
Vision System Toolbox™

• Support for common MATLAB language features, including matrix
operations, subscripting, program controls statements (if, switch, for,
while), and structures

1-2

Product Overview

Product Overview

In this section...

“When to Use MATLAB® Coder™” on page 1-3

“Code Generation for Embedded Software Applications” on page 1-3

“Code Generation for Fixed-Point Algorithms” on page 1-4

When to Use MATLAB Coder
Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.

• Generate MEX functions from MATLAB code to:

- Accelerate your MATLAB algorithms.

- Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

Code Generation for Embedded Software
Applications
The Embedded Coder™ product extends the MATLAB Coder product with
features that are important for embedded software development. Using the
Embedded Coder add-on product, you can generate code that has the clarity
and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems.

• Customize the appearance of the generated code.

• Optimize the generated code for a specific target environment.

• Enable tracing options that help you to verify the generated code.

• Generate reusable, reentrant code.

1-3

1 About MATLAB Coder

See Also

• “MATLAB Tutorials” in the Embedded Coder documentation.

Code Generation for Fixed-Point Algorithms
Using the Fixed-Point Toolbox™ product, you can generate:

• MEX functions to accelerate fixed-point algorithms.

• Fixed-point code that provides a bit-wise match to MEX function results.

1-4

Code Generation Workflow

Code Generation Workflow

See Also

• Chapter 3, “Setting Up a MATLAB® Coder™ Project”

• Chapter 4, “Preparing MATLAB Code for C/C++ Code Generation”

• Chapter 5, “Testing MEX Functions in MATLAB”

• Chapter 6, “Generating C/C++ Code from MATLAB Code”

• Chapter 8, “Accelerating MATLAB Algorithms”

1-5

1 About MATLAB Coder

1-6

2

Bug Reports

2 Bug Reports

Check Bug Reports for Latest Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at http://www.mathworks.com/support/bugreports/. Use the
Saved Searches and Watched Bugs tool with the search phrase “Incorrect
Code Generation” to obtain a report of known bugs that produce code that
might compile and execute, but still produce wrong answers. Enter the search
phrase "Simulation And Code Generation Mismatch" to obtain a report of
known bugs where the output of the simulation differs from the output of the
generated code.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

2-2

http://www.mathworks.com/support/bugreports/

3

Setting Up a MATLAB
Coder Project

• “MATLAB® Coder™ Project Set Up Workflow” on page 3-2

• “Creating a New Project” on page 3-3

• “Opening an Existing Project” on page 3-5

• “Adding Files to the Project” on page 3-6

• “Specifying Properties of Primary Function Inputs in a Project” on page 3-7

• “Autodefining Input Types” on page 3-8

• “Defining Input Parameters by Example in a Project” on page 3-12

• “Defining or Editing Input Parameter Type in a Project” on page 3-16

• “Defining Constant Input Parameters in a Project” on page 3-29

• “Defining Inputs Programmatically in the MATLAB File” on page 3-30

• “Adding Global Variables in a Project” on page 3-31

• “Specifying Global Variable Type and Initial Value in a Project” on page
3-32

• “Output File Name Specification” on page 3-38

• “Specifying Output File Locations” on page 3-39

• “Selecting Output Type” on page 3-40

• “More About” on page 3-44

3 Setting Up a MATLAB® Coder™ Project

MATLAB Coder Project Set Up Workflow
1 Create a new project or open an existing one.

2 Add the files from which you want to generate code.

3 Specify class, size, and complexity of all input parameters.

4 Optionally, add global variables.

5 Optionally, specify the output file name and output file locations.

6 Optionally, select the output type: MEX function (default), C/C++ static
library, C/C++ dynamic library or C/C++ executable.

3-2

Creating a New Project

Creating a New Project
1 At the MATLAB command line, enter:

coder

2 In the Name field, enter the project_name.

3 In the Location field, enter the location of the project.

Alternatively, use the ... (browse) button to navigate to the location.

Note The path should not contain spaces, as this can lead to code
generation failures in certain operating system configurations. If the
path contains non 7-bit ASCII characters, such as Japanese characters,
MATLAB Coder might not be able to find files on this path.

4 Click OK.

MATLAB Coder creates a project named project_name.prj in the specified
location and marks it with the project icon: .

3-3

3 Setting Up a MATLAB® Coder™ Project

Alternatively, if you already have a MATLAB Coder open, in the upper-right
corner of the project, click the Actions icon () and select New Project.

3-4

Opening an Existing Project

Opening an Existing Project
1 At the MATLAB command line, enter coder.

2 In the MATLAB Coder dialog box, click the Open tab.

3 From the drop-down list, select a previously opened project or click the
Browse button to find a project.

4 Click OK.

Alternatively, if you already have a MATLAB Coder project open, in the
upper-right corner of the project, click the Actions icon () and select Open
Project.

3-5

3 Setting Up a MATLAB® Coder™ Project

Adding Files to the Project
First, you must add the MATLAB files from which you want to generate code
to the project.

• Add only the main (entry-point) files that you call from MATLAB

• Do not add files that are called by these files.

• Do not add files that have spaces in their names. The path should not
contain spaces, as this can lead to code generation failures in certain
operating system configurations.

• If the path contains non 7-bit ASCII characters, such as Japanese
characters, MATLAB Coder might not be able to find files on this path.

.

To add a file, do one of the following:

• In the project, in the Entry-Point Files pane on the Overview tab, click
the Add files link and browse to the file.

• Drag a file from the current folder and drop it in the Entry-Point Files
pane on the Overview tab.

If you add more than one entry-point file, MATLAB Coder lists them
alphabetically.

If the functions that you added have inputs, you must define these inputs. See
“Specifying Properties of Primary Function Inputs in a Project” on page 3-7.

3-6

Specifying Properties of Primary Function Inputs in a Project

Specifying Properties of Primary Function Inputs in a
Project

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB Coder must
determine the properties of all variables in the MATLAB files at code
generation time. To infer variable properties in MATLAB files, MATLAB
Coder must be able to identify the properties of the inputs to the entry-point
function. Therefore, if your entry-point function has inputs, you must
specify the properties of these inputs. If your primary function has no
input parameters, MATLAB Coder can compile your MATLAB file without
modification. You do not need to specify properties of inputs to subfunctions
or external functions called by the entry-point function.

You must specify the same number and order of inputs as the MATLAB
function unless you use the tilde (~) character to specify unused function
inputs. If you use the tilde character, the inputs default to real, scalar doubles.

See Also

• “Properties to Specify” on page 6-34

How to Specify an Input Definition in a Project
Specify an input definition in your MATLAB Coder project using one of the
following methods:

• Autodefine Input Types

• Define by Example

• Define Type

• Define Constant

• Define Programmatically in the MATLAB File

Alternatively, specify input definitions at the command line and then use
the codegen function to generate code. For more information, see “Primary
Function Input Specification” on page 6-34.

3-7

3 Setting Up a MATLAB® Coder™ Project

Autodefining Input Types

In this section...

“How MATLAB Coder Autodefines Input Types” on page 3-8

“Prerequisites for Autodefining Input Types” on page 3-8

“How to Autodefine Input Types” on page 3-8

How MATLAB Coder Autodefines Input Types
If you specify a test file that calls the project entry-point functions, the
MATLAB Coder software can infer the input parameter types by running
the test file. If a test file calls an entry-point function multiple times with
different sized inputs, the MATLAB Coder software takes the union of the
inputs and infers that the inputs are variable size, with an upper bound equal
to the size of the largest input.

Prerequisites for Autodefining Input Types
Before using MATLAB Coder to autodefine entry-point function input
parameter types, you must add at least one entry-point file to your project.
You must also specify a test file that calls your entry-point functions with the
expected input types. The test file can be either a MATLAB function or a
script. It should call the entry-point function at least once.

How to Autodefine Input Types

1 On the MATLAB Coder project Overview tab, click the Autodefine types
link.

3-8

Autodefining Input Types

2 In the Autodefine Entry-Point Input Types dialog box, click the
button to add a test file to the project.

3 Browse to the folder that contains the test file and select the file.

Alternatively, if you have already added test files to the project, select
one from the list.

4 Click the Run button.

The software runs the test file and, if the file calls entry-point functions,
infers input types for these functions.

3-9

3 Setting Up a MATLAB® Coder™ Project

The dialog box displays a summary of the inferred types and provides the
following options:

• Make dimensions variable-sized if they are at least

If you want inputs above a specified size to be variable size with an
upper bound, select this option and specify the threshold. If the size, S, of
any dimension of an input is equal to or greater than this threshold, the
software makes this dimension variable size with an upper bound of S.

• Make dimensions unbounded if they are at least

If you want inputs above a specified size to be variable size with no upper
bounds (unbounded), select this option and specify the threshold. If the
size of any dimension an input is equal to or greater than this threshold,
the software makes this dimension unbounded.

3-10

Autodefining Input Types

5 Review the inferred types. If the types are acceptable, click Use These
Types. Otherwise, modify your test file, use a different test file to
autodefine the types or define them using an alternate method. For more
information, see “How to Specify an Input Definition in a Project” on page
3-7.

3-11

3 Setting Up a MATLAB® Coder™ Project

Defining Input Parameters by Example in a Project

In this section...

“How to Define an Input Parameter by Example” on page 3-12

“Specifying Input Parameters by Example” on page 3-13

“Specifying an Enumerated Type Input Parameter by Example” on page
3-14

“Specifying a Fixed-Point Input Parameter by Example” on page 3-14

How to Define an Input Parameter by Example

1 On the MATLAB Coder project Overview tab, select the input parameter
that you want to define.

2 To the right of the parameter, click the Actions icon () to open the
context menu.

3 From this menu, select Define by Example.

3-12

Defining Input Parameters by Example in a Project

4 In the Define by Example dialog box, enter a MATLAB expression.
MATLAB Coder software uses the class, size, and complexity of the value
of the specified variable or MATLAB expression when compiling the code.

Specifying Input Parameters by Example
To specify a 1-by-4 vector of unsigned 16-bit integers, in the Define by
Example dialog box, enter:

zeros(1,4,'uint16')

To specify that an input is a double-precision scalar, simply enter 0.

Optionally, after specifying the input type, you can specify that the input
is variable size.

1 To specify the input type, in the Define by Example dialog box, enter:

zeros(1,4,'uint16')

2 To specify that the input is variable size.

a On the project Overview tab, select the input.

b To the right of u, click the Actions icon to open the context menu.

c From the menu, select Edit Type.

d In the Define Type dialog box, click the Actions icon to open the context
menu.

3-13

3 Setting Up a MATLAB® Coder™ Project

e From the menu, select Make Sizes Variable.

The size of variable u changes from 1x4 to 1x:4. The colon, : indicates
that the second dimension is variable size with an upper bound of 4.

Alternatively, you can specify that the input is variable size by using the
coder.newtype function. In the Define by Example dialog box, enter the
following MATLAB expression:

coder.newtype('uint16',[1 4],[0 1])

Specifying an Enumerated Type Input Parameter by
Example
To specify that an input uses the enumerated type MyColors:

1 Define an enumeration MyColors. On the MATLAB path, create a file
named 'MyColors' containing:

classdef(Enumeration) MyColors < int32
enumeration

green(1),
red(2),

end
end

2 In the Define by Example dialog box, enter the following MATLAB
expression:

MyColors.red

Specifying a Fixed-Point Input Parameter by Example
To specify fixed-point inputs, you must install Fixed-Point Toolbox software.

To specify a signed fixed-point type with a word length of 8 bits, and a fraction
length of 3 bits, in the Define by Example dialog box, enter:

fi(10, 1, 8, 3)

3-14

Defining Input Parameters by Example in a Project

MATLAB Coder sets the type of input u to embedded.fi(1x1). By default, if
you have not specified a local fimath, MATLAB Coder uses the global fimath.
For more information, see in the Fixed-Point Toolbox documentation.

Optionally, modify the fixed-point data type definition. See “Editing a
Fixed-Point Input Parameter Type” on page 3-21.

3-15

3 Setting Up a MATLAB® Coder™ Project

Defining or Editing Input Parameter Type in a Project

In this section...

“How to Define or Edit an Input Parameter Type” on page 3-16

“Editing a Fixed-Point Input Parameter Type” on page 3-21

“Specifying Structures” on page 3-25

How to Define or Edit an Input Parameter Type

1 On the MATLAB Coder project Overview tab, select the input parameter
that you want to define.

2 To the right of the parameter, click the Actions icon () to open the
context menu.

3 From the menu, select Define Type or Edit Type, as applicable.

4 In the Define Type dialog box, from the Class drop-down list, select a class.
The default class is double.

3-16

Defining or Editing Input Parameter Type in a Project

Note To specify an enumerated type, enter its name in the Class field.
Define the enumerated type in a file on the MATLAB path. For more
information, see “Code Generation for Enumerated Types” on page 6-94.

5 In the Size field, enter the size.

Note If you enter an invalid size, MATLAB Coder highlights the Size field
in red to indicate that you must fix the size specification.

6 Optionally, to edit the type definition further, to the right of the Size field,
click the Actions icon.

MATLAB Coder displays the following menu options:

• Edit Size Vector Definition

Select this option to define the size of each dimension of the input. For
more information, see “Edit Size Vector Definition” on page 3-18.

• Make Sizes Variable

For nonscalar inputs, select this option to make all the dimensions
variable size.

Note For any dimension with a size of 0 or 1, selecting Make Sizes
Variable has no effect. However, you can manually make a dimension
with a size of 1 variable-size by selecting Edit Size Vector Definition
and entering a size of :1 for this dimension.

• Make Sizes Fixed

If some or all the dimensions of an input are variable size, select this
option to make all the dimensions, except those that are unbounded,
fixed in size.

7 Optionally, for numeric types, select Complex to make the parameter a
complex type. By default, inputs are real.

3-17

3 Setting Up a MATLAB® Coder™ Project

Edit Size Vector Definition
The Edit Size Vector Definition dialog box provides information about each
dimension of the input. For example, here the input is a fixed-size 2x3 matrix.

3-18

Defining or Editing Input Parameter Type in a Project

You can modify the size vector definition as described in the following table.

To... Do this...

Specify a variable-size
dimension with fixed
upper bounds

1 Select the dimension that you want to change.

2 Set the Dimension Category to Variable with specified
upper bounds.

Note If the size of the dimension is 0 or 1, it is always fixed
in size, so selecting Variable with specified upper bounds
has no effect.

3 In the Dimension Bound field, enter the upper bound value or
use the up and down arrows to adjust the value.

Specify a variable-size
dimension with no upper
bounds

1 Select the dimension that you want to change.

2 Set the Dimension Category to Unbounded size.

Note This action disables the Dimension Bound field for the
selected dimension.

Add a dimension
1 Select the dimension below which you want to add a new
dimension.

2 Click +.

By default, the new dimension is fixed size with an upper bound
of 1.

Remove a dimension Select the dimension to remove and click –.

3-19

3 Setting Up a MATLAB® Coder™ Project

Specifying Fixed-Size Input Parameters by Type
To specify a 1-by-4 vector of unsigned 16-bit integers, in the Define Type
dialog box, set:

1 Class to uint16.

2 Size to 1x4.

Specifying Variable-Size Input Parameters by Type
To specify that an input is a variable-size 1-by-4 vector of unsigned 16-bit
integers:

1 In the Define Type dialog box, set:

a Class to uint16.

b Size to 1x4.

2 To the right of the Size field, click the Actions icon to open the context
menu.

3 From the menu, select Make Sizes Variable.

The size of variable u changes from 1x4 to 1x:4. The : indicates that the
second dimension is variable size with an upper bound of 4.

Note Alternatively, in the Size field, enter 1x:4 to specify a variable-size
input with an upper bound of 4. If the size of the dimension is 0 or 1, it is
always fixed in size.

Specifying an Enumerated Type Input Parameter by Type
To specify that an input uses the enumerated type MyColors:

1 Define an enumeration MyColors. On the MATLAB path, create a file
named 'MyColors' containing:

classdef(Enumeration) MyColors < int32
enumeration

3-20

Defining or Editing Input Parameter Type in a Project

green(1),
red(2),

end
end

2 In the Define Type dialog box Class type field, enter MyColors.

Specifying a Fixed-Point Input Parameter by Type
To specify fixed-point inputs, you must install Fixed-Point Toolbox software.

1 In the Define Type dialog box, set Class to embedded.fi.

MATLAB Coder sets the type of input u to embedded.fi(1x1). By default,
if you do not assign a local fimath, uses the global fimath. For more
information, see in the Fixed-Point Toolbox documentation.

2 Optionally, modify the fixed-point data type definition. See “Editing a
Fixed-Point Input Parameter Type” on page 3-21.

3 Click OK.

Editing a Fixed-Point Input Parameter Type
To specify fixed-point inputs, you must install Fixed-Point Toolbox software.

To edit a fixed-point input parameter type:

1 On the project Overview tab, select the fixed-point input parameter that
you want to edit.

3-21

3 Setting Up a MATLAB® Coder™ Project

2 To the right of the parameter, click the Actions icon () to open the
context menu.

3 From this menu, select Edit Type.

In the Define Type dialog box, the input type is signed fixed-point with a
word length of 8 bits, a fraction length of 3 bits, and uses the global fimath.

3-22

Defining or Editing Input Parameter Type in a Project

4 Optionally, modify the size and complexity of the input as described in
“Defining or Editing Input Parameter Type in a Project” on page 3-16.

5 Modify the numerictype properties, as described in “Modifying numerictype
Properties” on page 3-23.

6 Modify the fimath properties, as described in “Modifying fimath Properties”
on page 3-24.

Modifying numerictype Properties
In the Define Type dialog box, under Fixed-Point Properties, select the
property value that you want to change and set it to the value that you want.
For more information, see numerictype.

3-23

3 Setting Up a MATLAB® Coder™ Project

Modifying fimath Properties

1 In the Define Type dialog box, under Fixed-Point Properties, set Local
fimath to True.

Additional fimath properties are displayed.

3-24

Defining or Editing Input Parameter Type in a Project

2 Select the property value that you want to change and set it to the value
that you want. For more information, see fimath.

Specifying Structures
When a primary input is a structure, MATLAB Coder treats each field as
a separate input. Therefore, you must specify properties for all fields of
a primary structure input in the order that they appear in the structure
definition, as follows:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

Specifying Structures by Type

1 On the project Overview tab, select the input parameter that you want
to define.

3-25

3 Setting Up a MATLAB® Coder™ Project

2 To the right of the parameter, click the Actions icon () to open the
context menu.

3 From the menu, select Define Type or Edit Type, as applicable.

4 In the Define Type dialog box:

a From the Class drop-down list, select struct.

b Set the size and complexity of the structure as described in “How to
Define or Edit an Input Parameter Type” on page 3-16.

c Click OK.

By default, MATLAB Coder creates a structure containing one field named
field that has unspecified type.

5 Rename this field as described in “How to Rename a Field in a Structure”
on page 3-26. Set its size and complexity as described in “How to Define
or Edit an Input Parameter Type” on page 3-16.

6 Optionally, add fields to the structure as described in “How to Add a Field
to a Structure” on page 3-27 and then set their size and complexity.

How to Rename a Field in a Structure

1 On the project Overview tab, select the structure that you want to rename.

3-26

Defining or Editing Input Parameter Type in a Project

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Rename.

4 In the Rename Field dialog box New Name field, enter the field name
and then click OK.

How to Add a Field to a Structure

1 On the project Overview tab, select the structure to which you want to
add a field.

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Add Field.

4 In the Rename Field dialog box New Name field, enter the field name
and then click OK.

How to Insert a Field into a Structure

1 On the project Overview tab, select the field under which you want to
add another field.

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Insert Field.

4 In the Rename Field dialog box New Name field, enter the field name
and then click OK.

3-27

3 Setting Up a MATLAB® Coder™ Project

How to Remove a Field from a Structure

Note You can remove a field from a structure only if it contains more than
one field.

1 In the project Overview tab, select the field that you want to remove.

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Remove Field.

3-28

Defining Constant Input Parameters in a Project

Defining Constant Input Parameters in a Project
1 On the project Overview tab, select the input parameter that you want
to define.

2 To the right of the parameter, click the Actions icon () to open the
context menu.

3 From this menu, select Define Constant.

4 In the Define Constant dialog box, enter the value of the constant or a
MATLAB expression that represents the constant.

MATLAB Coder software uses the value of the specified MATLAB
expression as a compile-time constant.

3-29

3 Setting Up a MATLAB® Coder™ Project

Defining Inputs Programmatically in the MATLAB File
You can use the MATLAB assert function to define properties of primary
function inputs directly in your MATLAB entry-point files.

To enable this option, on the Project Settings dialog box Advanced pane,
select Determine input types from source code preconditions. If you
enable this option:

• MATLAB Coder labels all entry-point function inputs as Deferred and
determines the input types at compile time.

• You cannot specify input types in this project using any other input
specification method.

For more information, see “Defining Input Properties Programmatically in
the MATLAB File” on page 6-46.

3-30

Adding Global Variables in a Project

Adding Global Variables in a Project
If your MATLAB code uses global variables, add them to the project:

1 On the project Overview tab, click Add global.

2 In the Rename Global dialog box New Name field, enter the name of the
global variable and then click OK.

By default, MATLAB Coder names the first global variable in a project g,
and subsequent global variables g1, g2, etc.

3 After adding a global variable, before building the project, specify its type
and, optionally, initial value. If you do not do this, you must create a
variable with the same name in the global workspace.

3-31

3 Setting Up a MATLAB® Coder™ Project

Specifying Global Variable Type and Initial Value in a
Project

In this section...

“How to Specify a Global Variable Type” on page 3-32

“Defining a Global Variable by Example” on page 3-33

“Defining or Editing Global Variable Type” on page 3-34

“Defining Global Variable Initial Value” on page 3-36

“Renaming Global Variables” on page 3-36

“Inserting Global Variables” on page 3-36

“Removing Global Variables” on page 3-37

How to Specify a Global Variable Type
1 Specify the type of each global variable using one of the following methods:

• Define by example

• Define type

2 Optionally, define an initial value for each global variable.

If you do not provide a type definition and initial value for a global variable,
you must create a variable with the same name and suitable class, size,
complexity, and value in the MATLAB workspace.

Why Specify a Type Definition for Global Variables?

If you use global variables in your MATLAB algorithm, before building the
project, you must add a global type definition and initial value for each. If
you do not initialize the global data, MATLAB Coder looks for the variable
in the MATLAB global workspace. If the variable does not exist, MATLAB
Coder generates an error.

For MEX functions, if you use global data, you must also specify whether to
synchronize this data between MATLAB and the MEX function. For more
information, see “Synchronizing Global Data with MATLAB” on page 6-80.

3-32

Specifying Global Variable Type and Initial Value in a Project

Defining a Global Variable by Example

1 On the project Overview tab, select the global variable that you want
to define.

2 To the right of the parameter, click the Actions icon () to open the
context menu.

3 From this menu, select Define by Example.

3-33

3 Setting Up a MATLAB® Coder™ Project

4 In the Define by Example dialog box, enter either a MATLAB expression
that has the required class, size, and complexity. MATLAB Coder software
uses the class, size, and complexity of the value of this expression as the
type for the global variable.

Note You define global variables in the same way that you define input
parameters. For more information, see “Defining Input Parameters by
Example in a Project” on page 3-12

Defining or Editing Global Variable Type

1 On the project Overview tab, select the global variable that you want
to define.

2 To the right of the parameter, click the Actions icon () to open the
context menu.

3 From the menu, select Define Type or Edit Type, as applicable.

3-34

Specifying Global Variable Type and Initial Value in a Project

4 In the Define Type dialog box, from the Class drop-down list, select a class.
The default class is double.

Note If you specify an enumerated type, enter its name in the Class field.
Define the enumerated type in a file on the MATLAB path. For more
information, see “Code Generation for Enumerated Types” on page 6-94.

5 In the Size field, enter the size. The default size is scalar, 1x1.

6 Optionally, to edit the type definition further, to the right of the Size field,
click the Actions icon.

MATLAB Coder displays the following menu options:

• Edit Size Vector Definition

Select this option to define the size of each dimension of the input. For
more information, see “Edit Size Vector Definition” on page 3-18.

• Make Sizes Variable

For nonscalar inputs, select this option to make all the dimensions
variable size.

Note For any dimension with a size of 0 or 1, selecting Make Sizes
Variable has no effect. However, you can manually make a dimension
with a size of 1 variable-size by selecting Edit Size Vector Definition
and entering a size of :1 for this dimension.

• Make Sizes Fixed

If some or all the dimensions of an input are variable size, select this
option to make all the dimensions, except those that are unbounded,
fixed in size.

7 Optionally, for numeric types, select Complex to make the parameter a
complex type. By default, inputs are real.

3-35

3 Setting Up a MATLAB® Coder™ Project

Defining Global Variable Initial Value

1 On the project Overview tab, select the global variable for which you want
to specify an initial value.

2 To the right of the variable, click the Actions icon () to open the context
menu.

3 From the menu, select Define Initial Value.

Note This option is available only if the global variable has a specified
type.

4 In the Define Initial Value dialog box, enter a MATLAB expression.
MATLAB Coder software uses the value of the specified MATLAB
expression as the value of the global variable.

Renaming Global Variables

1 On the project Overview tab, select the global variable that you want to
rename.

2 To the right of the variable, click the Actions icon () to open the context
menu.

3 From this menu, select Rename.

4 In the Rename Global dialog box New Name field, enter the name of the
global variable.

Inserting Global Variables

1 On the project Overview tab, select the global variable under which you
want to insert another global variable.

2 To the right of the variable, click the Actions icon () to open the context
menu.

3-36

Specifying Global Variable Type and Initial Value in a Project

3 From this menu, select Insert Global.

4 In the Rename Global dialog box New Name field, enter the name of the
global variable.

Removing Global Variables

1 On the project Overview tab, select the global variable that you want to
remove.

2 To the right of the variable, click the Actions icon () to open the context
menu.

3 From this menu, select Remove Global.

MATLAB Coder removes the global variable.

3-37

3 Setting Up a MATLAB® Coder™ Project

Output File Name Specification
On the project Build tab, in the Output File Name field, enter the file name.
The file name can include an existing path.

Note Do not put any spaces in the file name.

By default, if the name of the first entry-point MATLAB file is fcn1, the
output file name is:

• fcn1 for C/C++ libraries and executables.

• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• project_folder is your current project folder

• target is:

- mex for MEX functions

- lib for static C/C++ libraries

- dll for dynamic C/C++ libraries

- exe for C/C++ executables

To learn how to change the default output folder, see “Specifying Output
File Locations” on page 3-39.

Command Line Alternative
Use the codegen function -o option.

3-38

Specifying Output File Locations

Specifying Output File Locations
The path should not contain:

• Spaces, as this can lead to code generation failures in certain operating
system configurations.

• Non 7-bit ASCII characters, such as Japanese characters.

1 On the project Build tab, click More settings.

2 In the Project Settings dialog box, click the Paths tab.

The default setting for the Build Folder field is A subfolder of the
project folder. By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• fcn1 is the name of the first entry-point file

• target is:

– mex for MEX functions

– dll for dynamic C/C++ libraries

– lib for static C/C++ libraries

– exe for C/C++ executables

3 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working
folder

MATLAB Coder generates files in the
MATLAB_working_folder/codegen/target/fcn1 folder

• Set Build Folder to Specified folder. In the Build folder name
field, provide the path to the folder.

Command Line Alternative
Use the codegen function -d option.

3-39

3 Setting Up a MATLAB® Coder™ Project

Selecting Output Type
On the project Build tab, from the Output type drop-down list, select one of
the available output types:

• MEX Function (default)

• C/C++ Static Library

• C/C++ Dynamic Library

• C/C++ Executable

Command Line Alternative
Use the codegen function -config option.

Changing Output Type
MEX functions use a different set of configuration parameters than C/C++
libraries and executables use. When you switch the output type between MEX
Function and C/C++ Static Library, C/C++ Dynamic Library or C/C++
Executable, you should verify these settings.

If you enable any of the following parameters that are available for all output
types when the output type is MEX Function and you want to use the same
setting for C/C++ code generation as well, you must enable it again for C/C++
Static Library, C/C++ Dynamic Library, and C/C++ Executable.

Check These MATLAB Coder Project Parameters When
Changing Output Type

Project Settings Dialog
Box Tab

Parameter Name

Working folder

Build folder

Paths

Search paths

Speed Saturate on integer overflow

3-40

Selecting Output Type

Project Settings Dialog
Box Tab

Parameter Name

Enable variable-sizing

Dynamic memory allocation

Memory

Stack usage max

Generated file partitioning method

Include comments

MATLAB source code as comments

Code Appearance

Reserved names

Always create a code generation reportDebugging

Automatically launch a report if one is
generated

Source file

Header file

Initialize function

Terminate function

Additional include directories

Additional source files

Additional libraries

Custom Code

Post-code-generation command

3-41

3 Setting Up a MATLAB® Coder™ Project

Project Settings Dialog
Box Tab

Parameter Name

Constant folding timeout

Language

Inline threshold

Inline threshold max

Inline stack limit

Use memcpy for vector assignment

Memcpy threshold (bytes)

Advanced

Use memset to initialize floats and doubles
to 0.0

Check These Command-Line Parameters When Changing
Output Type
When you switch between MEX and C output types, check these
coder.MexCodeConfig, coder.CodeConfig or coder.EmbeddedCodeConfig
configuration object parameters, as applicable.

• ConstantFoldingTimeout

• CustomHeaderCode

• CustomInclude

• CustomInitializer

• CustomLibrary

• CustomSource

• CustomSourceCode

• CustomTerminator

• DynamicMemoryAllocation

• EnableMemcpy

• EnableVariableSizing

3-42

Selecting Output Type

• FilePartitionMethod

• GenCodeOnly

• GenerateComments

• GenerateReport

• InitFltsAndDblsToZero

• InlineStackLimit

• InlineThreshold

• InlineThresholdMax

• LaunchReport

• MATLABSourceComments

• MemcpyThreshold

• PostCodeGenCommand

• ReservedNameArray

• SaturateOnIntegerOverflow

• StackUsageMax

• TargetLang

3-43

3 Setting Up a MATLAB® Coder™ Project

More About
• “Primary Function Input Specification” on page 6-34

• “How Working with Variable-Size Data Is Different for Code Generation”

• “Code Generation for Complex Data”

• “Code Generation for Enumerated Types” on page 6-94

• “Generating C Code from MATLAB Code Using the MATLAB Coder Project
Interface”

3-44

4

Preparing MATLAB Code
for C/C++ Code Generation

• “Preparing MATLAB Code for C/C++ Code Generation Workflow” on page
4-2

• “Fixing Errors Detected by the Code Analyzer” on page 4-4

• “How to Generate MEX Functions Using the MATLAB® Coder™ Project
Interface” on page 4-6

• “How to Generate MEX Functions at the Command Line” on page 4-13

• “Fixing Errors Detected at Code Generation Time” on page 4-15

• “Design Considerations When Writing MATLAB Code for Code Generation”
on page 4-16

• “Running MEX Functions” on page 4-18

• “Debugging Strategies” on page 4-19

4 Preparing MATLAB® Code for C/C++ Code Generation

Preparing MATLAB Code for C/C++ Code Generation
Workflow

4-2

Preparing MATLAB® Code for C/C++ Code Generation Workflow

See Also

• Chapter 3, “Setting Up a MATLAB® Coder™ Project”

• “Fixing Errors Detected by the Code Analyzer” on page 4-4

• “How to Generate MEX Functions Using the MATLAB® Coder™ Project
Interface” on page 4-6

• “Fixing Errors Detected at Code Generation Time” on page 4-15

• Chapter 5, “Testing MEX Functions in MATLAB”

• Chapter 6, “Generating C/C++ Code from MATLAB Code”

• Chapter 8, “Accelerating MATLAB Algorithms”

4-3

4 Preparing MATLAB® Code for C/C++ Code Generation

Fixing Errors Detected by the Code Analyzer
You use the code analyzer in the MATLAB Editor to check for code violations
at design time, minimizing code generation errors. The code analyzer
continuously checks your code as you enter it. It reports problems and
recommends modifications to maximize performance and maintainability.
The analyzer indicator is in the top-right corner of the MATLAB Editor
window. If the code analyzer detects no issues, it is green. It turns orange to
indicate warnings and red to indicate errors.

To use the code analyzer to identify warnings and errors specific to code
generation, you must add the %#codegen directive (or pragma) to your
MATLAB file. A complete list of code generation messages is available in
the MATLAB Code Analyzer preferences. For more information, see “Using
the MATLAB Code Analyzer Report” in the MATLAB Desktop Tools and
Development Environment documentation.

Here, the code analyzer message indicator is green, indicating that it has not
detected any issues.

If the indicator is red, a red marker appears to the right of the code where
the error occurs. Place your pointer over the marker for information about
the error. Click the underlined text in the error message for a more detailed
explanation and suggested actions to fix the error.

4-4

Fixing Errors Detected by the Code Analyzer

Before generating code from your MATLAB code, you must fix any errors
detected by the code analyzer . For more information about how to fix
these errors, see “Changing Code Based on Code Analyzer Messages” in the
MATLAB Desktop Tools and Development Environment documentation.

See Also

• “Design Considerations When Writing MATLAB Code for Code Generation”
on page 4-16

• “Debugging Strategies” on page 4-19

4-5

4 Preparing MATLAB® Code for C/C++ Code Generation

How to Generate MEX Functions Using the MATLAB Coder
Project Interface

Workflow

Step Action Details

1 Set up your MATLAB Coder project. Chapter 3, “Setting Up a MATLAB®

Coder™ Project”

2 Fix any errors detected by the code
analyzer.

“Fixing Errors Detected by the Code
Analyzer” on page 4-4

3 Select whether to generate code only. “Generating Code Only” on page 4-9

4 Specify build configuration parameters. “Configuring Project Settings” on page 4-10

5 Build the project. “Building a MATLAB® Coder™ Project” on
page 4-11

Generating a MEX Function Using the Project
Interface
In this example, you create a MATLAB function that adds two numbers, then
create a MATLAB Coder project for this file. Using the project user interface,
you specify types for the function input parameters, and then generate a
MEX function for the MATLAB code.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 In the same folder, set up a MATLAB Coder project.

a At the MATLAB command line, enter

coder -new mcadd.prj

By default, the project opens in the MATLAB workspace on the right
side.

4-6

How to Generate MEX Functions Using the MATLAB® Coder™ Project Interface

b On the project Overview tab, click the Add files link, browse to the
file mcadd.m, and click OK to add the file to the project.

The file is displayed on the Overview tab, and both inputs are
undefined.

4-7

4 Preparing MATLAB® Code for C/C++ Code Generation

c Define the type of input u.

i On the Overview tab, select the input parameter u. To the right of
this parameter, click the Actions icon () to open the context menu.

ii From the menu, select Define Type.

iii In the Define Type dialog box, set Class to int16. Click OK to
specify that the input is a scalar int16.

MATLAB Coder displays scalars with a size 1x1.

d Repeat step c for input v.

3 In the MATLAB Coder project, click the Build tab.

By default, the Output type is MEX function and the Output file name
is mcadd_mex.

4-8

How to Generate MEX Functions Using the MATLAB® Coder™ Project Interface

4 On this tab, click the Build button to generate a MEX function using the
default project settings.

MATLAB Coder builds the project and, by default, generates a MEX
function, mcadd_mex, in the current folder. MATLAB Coder also generates
other supporting files in a subfolder called codegen/mexfcn/mcadd.
MATLAB Coder uses the name of the MATLAB function as the root name
for the generated files and creates a platform-specific extension for the
MEX file, as described in “Naming Conventions” on page 6-66.

You can now test your MEX function in MATLAB. For more information,
see Chapter 5, “Testing MEX Functions in MATLAB”.

Generating Code Only
On the project Build tab, select Generate code only.

4-9

4 Preparing MATLAB® Code for C/C++ Code Generation

If you want to generate C/C++ code only, select this option. Doing so does not
invoke the make command or generate compiled object code.

When to Generate Code Only

• After generating and verifying a MEX function.

• During the development cycle, when you want to iterate rapidly between
modifying MATLAB code and generating code and you want to inspect
the code.

• You want to compile the code with your own compiler.

Configuring Project Settings

1 On the project Build tab, click the More settings link to view the project
settings for the selected output type.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you change the output type from
MEX Function to C/C++ Static Library, C/C++ Dynamic Libraryor
C/C++ Executable, verify these settings. For more information, see
“Changing Output Type” on page 3-40.

2 In the Project Settings dialog box, select the settings that you want to apply.

Tip To learn more about the configuration parameters on the current tab
of the Project Settings dialog box, click the Help button in the dialog box.

See Also

• “How to Enable Code Generation Reports in the Project Settings Dialog
Box” on page 6-172

• “In the Project Settings Dialog Box” on page 6-115

4-10

How to Generate MEX Functions Using the MATLAB® Coder™ Project Interface

• “How to Disable Inlining Globally in the Project Settings Dialog Box” on
page 6-126

• “Generating Traceable Code” on page 6-86

• “Disabling Run-Time Checks in the Project Settings Dialog Box” on page
8-15

• “Disabling BLAS Library Support in the Project Settings Dialog Box” on
page 8-12

Building a MATLAB Coder Project
On the project Build tab, click the Build button to build the project using
the specified settings. While MATLAB Coder builds a project, it displays the
build progress in the Build dialog box. When the build is complete, MATLAB
Coder provides details in the Build Results pane.

Viewing Build Results
The Build Results pane provides information about the most recent build. If
the code generation report is enabled or build errors occur, MATLAB Coder
generates a report that provides detailed information about the most recent
build and provides a link to the report.

To view the report, click the View report link. After a build completes, this
report provides links to your MATLAB code and generated C/C++ files as well
as compile-time type information for the variables in your MATLAB code. If
build errors occur, it lists all errors and warnings.

Saving Build Results
When MATLAB Coder builds a project, it displays the build progress and
results in the Build dialog box. To save the build results, click the Save to
log file link and specify the log file location.

See Also

• “Code Generation Reports” on page 6-169

• “Code Generation for More Than One Entry-Point MATLAB Function”
on page 6-71

4-11

4 Preparing MATLAB® Code for C/C++ Code Generation

• “Code Generation for Global Data” on page 6-78

See Also

• “Code Generation for More Than One Entry-Point MATLAB Function”
on page 6-71

• “Code Generation for Global Data” on page 6-78

• “Output File Name Specification” on page 3-38

• “Specifying Output File Locations” on page 3-39

4-12

How to Generate MEX Functions at the Command Line

How to Generate MEX Functions at the Command Line

Workflow for Generating MEX Functions at the
Command Line

Step Action Details

1 Install prerequisite products. “Installing Prerequisite Products”

2 Set up your C/C++ compiler. “Setting Up the C/C++ Compiler”

3 Set up your file infrastructure. “Paths and File Infrastructure Setup” on
page 6-65

4 Fix any errors detected by the code
analyzer.

“Fixing Errors Detected by the Code
Analyzer” on page 4-4

5 Specify build configuration parameters. “How to Specify Build Configuration
Parameters” on page 6-26

6 Specify properties of primary function
inputs.

“Primary Function Input Specification” on
page 6-34

7 Generate the MEX function using codegen
with suitable command-line options.

“Generating MEX Functions at the
Command Line Using codegen” on page
4-14

Generating a MEX Function at the Command Line
In this example, you use the codegen function to generate a MEX function
from a MATLAB file that adds two inputs. You use the codegen -args option
to specify that both inputs are int16.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 Generate a platform-specific MEX function in the current folder. At the
command line, specify that the two input parameters are int16 using the
-args option. By default, if you do not use the -args option, codegen treats
inputs as real, scalar doubles.

4-13

4 Preparing MATLAB® Code for C/C++ Code Generation

codegen mcadd -args {int16(0), int16(0)}

codegen generates a MEX function, mcadd_mex, in the current folder.
codegen also generates other supporting files in a subfolder called
codegen/mexfcn/mcadd.codegen uses the name of the MATLAB function
as the root name for the generated files and creates a platform-specific
extension for the MEX file, as described in “Naming Conventions” on page
6-66.

Generating MEX Functions at the Command Line
Using codegen
You generate a MEX function at the command line using the codegen function.

The basic command is:

codegen fcn

By default, codegen generates a MEX function in the current folder as
described in “How to Generate MEX Functions at the Command Line” on
page 4-13.

You can modify this default behavior by specifying one or more compiler
options with codegen, separated by spaces on the command line. For more
information, see codegen.

See Also

• “Primary Function Input Specification” on page 6-34

• “Generating MEX Functions from MATLAB Code at the Command Line”

• “Code Generation for More Than One Entry-Point MATLAB Function”
on page 6-71

• “Code Generation for Global Data” on page 6-78

4-14

Fixing Errors Detected at Code Generation Time

Fixing Errors Detected at Code Generation Time
When MATLAB Coder detects errors or warnings, it automatically generates
an error report. The error report describes the issues and provides links to
the MATLAB code with errors.

To fix the errors, modify your MATLAB code to use only those MATLAB
features that are supported for code generation. For more information, see
“About Code Generation from MATLAB Algorithms” in the MATLAB Coder
documentation. Choose a debugging strategy for detecting and correcting
code generation errors in your MATLAB code. For more information, see
“Debugging Strategies” on page 4-19.

When code generation is complete, MATLAB Coder generates a MEX function
that you can use to test your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless you
declare these functions to be extrinsic, MATLAB Coder attempts to compile
these functions. See “How MATLAB Resolves Function Calls in Generated
Code” in the Code Generation from MATLAB documentation. To get detailed
diagnostics, add the %#codegen directive to each external function that you
want codegen to compile.

See Also

• “Code Generation Reports” on page 6-169

• “Why Test MEX Functions in MATLAB?” on page 5-4

• “Design Considerations When Writing MATLAB Code for Code Generation”
on page 4-16

• “Debugging Strategies” on page 4-19

• “Declaring MATLAB Functions as Extrinsic Functions”

4-15

4 Preparing MATLAB® Code for C/C++ Code Generation

Design Considerations When Writing MATLAB Code for
Code Generation

When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get best
speed performance, but with higher memory usage. Most MATLAB code
takes advantage of the dynamic sizing features in MATLAB, therefore
dynamic memory allocation typically enables you to generate code from
existing MATLAB code without modifying it much. Dynamic memory
allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. The default compiler that
MathWorks® supplies with MATLAB for Windows® 32-bit platforms is
not a good compiler for performance.

4-16

Design Considerations When Writing MATLAB® Code for Code Generation

- Consider disabling run-time checks.

By default, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. Generally, these checks
result in more generated code and slower MEX function execution.
Disabling run-time checks usually results in streamlined generated code
and faster MEX function execution. Disable these checks only if you
have verified that array bounds and dimension checking is unnecessary.

See Also

• “About Code Generation from MATLAB Algorithms” in the Code
Generation from MATLAB documentation

• “Defining MATLAB Variables for C/C++ Code Generation”in the Code
Generation from MATLAB documentation

• “How Working with Variable-Size Data Is Different for Code Generation”
in the Code Generation from MATLAB documentation

• “Bounded Versus Unbounded Variable-Size Data” in the Code Generation
from MATLAB documentation

• “Controlling Dynamic Memory Allocation” on page 6-96

• “Controlling Run-Time Checks” on page 8-14

4-17

4 Preparing MATLAB® Code for C/C++ Code Generation

Running MEX Functions
To run a MEX function generated by MATLAB Coder, you must have licenses
for all the toolboxes that the MEX function requires. For example, if you
generate a MEX function from a MATLAB algorithm that uses a Computer
Vision System Toolbox function or System object, to run the MEX function,
you must have a Computer Vision System Toolbox license.

When you upgrade MATLAB, you should rebuild MEX functions before
running them with the new version.

4-18

Debugging Strategies

Debugging Strategies
Before you perform code verification, choose a debugging strategy for
detecting and correcting noncompliant code in your MATLAB applications,
especially if they consist of a large number of MATLAB files that call each
other’s functions. The following table describes two general strategies, each of
which has advantages and disadvantages.

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification 1 Verify that your

lowest-level (leaf)
functions are compliant.

2 Work your way up
the function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient

• Unlikely to
cause errors

• Easy to isolate
code generation
syntax violations

Requires application tests
that work from the bottom up

4-19

4 Preparing MATLAB® Code for C/C++ Code Generation

Debugging
Strategy

What to Do Pros Cons

Top-down
verification 1 Declare all functions

called by the top-level
function to be extrinsic
so that MATLAB Coder
does not compile them.
See “Declaring MATLAB
Functions as Extrinsic
Functions” in the
Code Generation from
MATLAB documentation.

2 Verify that your top-level
function is compliant.

3 Work your way down
the function hierarchy
incrementally by
removing extrinsic
declarations one by one to
compile and verify each
function, ending with the
leaf functions.

You retain your
top-level tests

Introduces extraneous code
that you must remove after
code verification, including:
• Extrinsic declarations

• Additional assignment
statements as required
to convert opaque values
returned by extrinsic
functions to nonopaque
values (see “Working with
mxArrays” in the Code
Generation from MATLAB
documentation).

4-20

5

Testing MEX Functions in
MATLAB

• “Workflow for Testing MEX Functions in MATLAB” on page 5-2

• “Why Test MEX Functions in MATLAB?” on page 5-4

• “Running MEX Functions” on page 5-5

• “How to Verify MEX Functions in a Project” on page 5-6

• “How to Verify MEX Functions at the Command Line” on page 5-9

• “Debugging Run-Time Errors” on page 5-10

5 Testing MEX Functions in MATLAB®

Workflow for Testing MEX Functions in MATLAB

See Also

• Chapter 3, “Setting Up a MATLAB® Coder™ Project”

5-2

Workflow for Testing MEX Functions in MATLAB®

• Chapter 4, “Preparing MATLAB Code for C/C++ Code Generation”

• “Why Test MEX Functions in MATLAB?” on page 5-4

• “Debugging Run-Time Errors” on page 5-10

• Chapter 6, “Generating C/C++ Code from MATLAB Code”

• Chapter 8, “Accelerating MATLAB Algorithms”

5-3

5 Testing MEX Functions in MATLAB®

Why Test MEX Functions in MATLAB?
Before generating C/C++ code for your MATLAB code, it is a best practice to
test the MEX function to verify that it provides the same functionality as
the original MATLAB code. To do this testing, run the MEX function using
the same inputs as you used to run the original MATLAB code and compare
the results. For more information about how to test a MEX function in a
project, see “How to Verify MEX Functions in a Project” on page 5-6. For more
information on how to test a MEX function at the command line, see “How to
Verify MEX Functions at the Command Line” on page 5-9.

In addition, running the MEX function in MATLAB before generating code
enables you to detect and fix run-time errors that are much harder to
diagnose in the generated code. If you encounter run-time errors in your
MATLAB functions, fix them before generating code. For more information,
see “Debugging Run-Time Errors” on page 5-10.

When you run your MEX function in MATLAB, by default, the following
run-time checks execute :

• Memory integrity checks. These checks perform array bounds checking,
dimension checking, and detect violations of memory integrity in code
generated for MATLAB functions. If a violation is detected, MATLAB stops
execution and provides a diagnostic message.

• Responsiveness checks in code generated for MATLAB functions. These
checks enable periodic checks for Ctrl+C breaks in code generated for
MATLAB functions, allowing you to terminate execution with Ctrl+C at
any time.

For more information, see “Controlling Run-Time Checks” on page 8-14.

5-4

Running MEX Functions

Running MEX Functions
To run a MEX function generated by MATLAB Coder, you must have licenses
for all the toolboxes that the MEX function requires. For example, if you
generate a MEX function from a MATLAB algorithm that uses a Computer
Vision System Toolbox function or System object, to run the MEX function,
you must have a Computer Vision System Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new
version, rebuild the MEX functions.

5-5

5 Testing MEX Functions in MATLAB®

How to Verify MEX Functions in a Project

In this section...

“Using Test Files That Call Only MATLAB Functions” on page 5-6

“Using Test Files That Call MEX Functions” on page 5-7

Using Test Files That Call Only MATLAB Functions
If you have a test file that calls only your original entry-point MATLAB
function, use the following procedure. A test file can be either a MATLAB
function or a script. To use this procedure, you should verify that it calls at
least one entry-point function. The generated MEX function must be in the
same folder as the entry-point functions.

Selecting the Redirect entry-point calls to MEX function option directs
MATLAB Coder software to replace calls to the MATLAB function with calls
to the generated MEX function. This capability allows you to compare the
behavior of the MEX function with that of the original function.

If your test file calls the generated MEX function, do not follow this procedure.
Instead, follow the procedure in “Using Test Files That Call MEX Functions”
on page 5-7.

1 On the project Build tab Verification panel, click the button to add a
test file. Alternatively, if you have already added test files to the project,
select one from the list.

2 Run the test file calling the original MATLAB algorithm.

a Clear Rebuild MEX function.

b Clear Redirect entry-point calls to MEX function.

c Click the Run button.

The test file runs and calls your original MATLAB algorithm.

3 Verify that the test results are as expected.

5-6

How to Verify MEX Functions in a Project

4 Run the test file calling the MEX function instead of the original MATLAB
algorithm.

a Select Rebuild MEX function.

b Select Redirect entry-point calls to MEX function.

c Click the Run button.

The project builds the MEX function. The test file runs and automatically
replaces calls to your original MATLAB algorithm with calls to the
generated MEX function.

5 Compare the results of the two runs to verify that the MEX function
provides the same functionality as the original MATLAB algorithm.

Using Test Files That Call MEX Functions
If you have a test file that calls the generated MEX function, use the following
procedure. If your test file calls both the original MATLAB function and the
generated MEX function, you can also use this procedure.

A test file can be either a MATLAB function or a script. To use this procedure,
you should verify that it calls at least one MEX function. The MEX function
must be in the same folder as the entry-point functions.

1 On the project Build tab Verification panel, click the button to add a
test file. Alternatively, if you have already added test files to the project,
select one from the list.

2 Run the test file.

a Select Rebuild MEX function.

b Clear Redirect entry-point calls to MEX function.

Because the test file already calls the MEX function, you do not want
MATLAB Coder to redirect entry-point function calls.

c Click the Run button.

The project builds the MEX function. The test file runs and calls the
generated MEX function. If applicable, it also calls the original MATLAB
algorithm.

5-7

5 Testing MEX Functions in MATLAB®

3 Use the results of this run to verify that the MEX function provides the
same functionality as the original MATLAB algorithm.

5-8

How to Verify MEX Functions at the Command Line

How to Verify MEX Functions at the Command Line
If you have a test file that calls your original MATLAB function, use
coder.runTest to verify the MEX function at the command line.
coder.runTest runs the test file replacing calls to the original MATLAB
function with calls to the generated MEX function. For more information, see
the coder.runTest function reference information and “Verifying the MEX
Function” in the MATLAB Coder “Generating C Code from MATLAB Code at
the Command Line” tutorial.

5-9

5 Testing MEX Functions in MATLAB®

Debugging Run-Time Errors

In this section...

“Viewing Errors in the Run-Time Stack” on page 5-10

“Handling Run-Time Errors” on page 5-12

If you encounter run-time errors in your MATLAB functions, the run-time
stack appears automatically in the MATLAB command window. Use the error
message and stack information to learn more about the source of the error and
then either fix the issue or add error-handling code. For more information, see
“Viewing Errors in the Run-Time Stack” on page 5-10“Handling Run-Time
Errors” on page 5-12.

Viewing Errors in the Run-Time Stack

About the Run-Time Stack
The run-time stack is enabled by default for MEX code generation from
MATLAB. Use the error message and the following stack information to learn
more about the source of the error:

• The name of the function that generated the error

• The line number of the attempted operation

• The sequence of function calls that led up to the execution of the function
and the line at which each of these function calls occurred

5-10

Debugging Run-Time Errors

Example Run-Time Stack Trace. This example shows the run-time stack
trace for MEX function mlstack_mex:

Check Bug Reports for Latest Issues and Fixes on page 2-2

Index exceeds matrix dimensions. Index
value -1 exceeds valid range [1-4] of
array x.

Error in mlstack>mayfail (line 31)
y = x(u);

Error in mlstack>subfcn1 (line 5)
switch (mayfail(u))

Error in mlstack (line 2)
y = subfcn1(u);

The stack trace provides the following information:

• The type of error.

??? Index exceeds matrix dimensions.
Index value -1 exceeds valid range [1-4] of array x.

• Where the error occurred.

Error in ==>mlstack>mayfail at 31
y = x(u);

• The function call sequence prior to the failure.

Error in ==> mlstack>subfcn1 at 5
switch (mayfail(u))

Error in ==> mlstack at 2
y = subfcn1(u);

When to Use the Run-Time Stack
The run-time stack is useful during debugging to help you find the source of
run-time errors. However, when the stack is enabled, the generated code

5-11

5 Testing MEX Functions in MATLAB®

contains instructions for maintaining the run-time stack, which might slow
performance. Consider disabling the run-time stack for faster performance.

How to Disable the Run-Time Stack. You can disable the run-time stack
by disabling the memory integrity checks as described in “How to Disable
Run-Time Checks” on page 8-15.

Caution Before disabling the memory integrity checks, you should verify
that all array bounds and dimension checking is unnecessary.

Handling Run-Time Errors
The code generation software propagates error ID’s. If you throw an error or
warning in your MATLAB code, use the try-catch statement in your test
bench code to examine the error information and attempt to recover, or clean
up and abort. For example, for the function in “Example Run-Time Stack
Trace” on page 5-11, create a test script containing:

try
mlstack_mex(u)

catch
% Add your error handling code here

end

For more information, see “The try-catch Statement” in the MATLAB
Programming Fundamentals documentation.

5-12

6

Generating C/C++ Code
from MATLAB Code

• “Code Generation Workflow” on page 6-3

• “C/C++ Code Generation” on page 6-5

• “Generating C/C++ Static Libraries from MATLAB Code” on page 6-7

• “Generating C/C++ Dynamically Linked Libraries from MATLAB Code”
on page 6-9

• “Generating Standalone C/C++ Executables from MATLAB Code” on page
6-13

• “Build Setting Configuration” on page 6-19

• “Primary Function Input Specification” on page 6-34

• “Speeding Up Compilation” on page 6-57

• “Code Optimization” on page 6-59

• “Paths and File Infrastructure Setup” on page 6-65

• “Code Generation for More Than One Entry-Point MATLAB Function”
on page 6-71

• “Code Generation for Global Data” on page 6-78

• “Generation of Traceable Code” on page 6-85

• “Code Generation for Enumerated Types” on page 6-94

• “Code Generation for Variable-Size Data” on page 6-95

• “Code Generation for MATLAB Classes” on page 6-114

• “How MATLAB® Coder™ Partitions Generated Code” on page 6-115

6 Generating C/C++ Code from MATLAB® Code

• “Customizing the Post-Code-Generation Build Process” on page 6-129

• “Code Generation Reports” on page 6-169

• “Troubleshooting” on page 6-187

6-2

Code Generation Workflow

Code Generation Workflow

6-3

6 Generating C/C++ Code from MATLAB® Code

See Also

• Chapter 3, “Setting Up a MATLAB® Coder™ Project”

• Chapter 4, “Preparing MATLAB Code for C/C++ Code Generation”

• Chapter 5, “Testing MEX Functions in MATLAB”

• “Build Setting Configuration” on page 6-19

• “C/C++ Code Generation” on page 6-5

• “Code Optimization” on page 6-59

6-4

C/C++ Code Generation

C/C++ Code Generation
Using MATLAB Coder, you can generate standalone C/C++ static and
dynamic libraries and C/C++ executables. If you specify C++, MATLAB Coder
wraps the C code into .cpp files so that you can use a C++ compiler and
interface with external C++ applications. It does not generate C++ classes. By
default, MATLAB Coder, if no code generation errors occur, MATLAB Coder
generates a platform-specific MEX function in the current folder.

To learn how to generate... See...

C/C++ static libraries from your
MATLAB code

“Generating C/C++ Static Libraries
from MATLAB Code” on page 6-7

C/C++ dynamic libraries from your
MATLAB code

“Generating C/C++ Dynamically
Linked Libraries from MATLAB
Code” on page 6-9

C/C++ executables from your
MATLAB code

“Generating Standalone C/C++
Executables from MATLAB Code”
on page 6-13

MEX functions from your MATLAB
code

“How to Generate MEX Functions
Using the MATLAB® Coder™
Project Interface” on page 4-6

If errors occur, MATLAB Coder does not generate code, but produces an error
report and provides a link to this report. For more information, see “Code
Generation Reports” on page 6-169.

Specifying Custom Files to Build
In addition to your MATLAB file, you can specify the following types of custom
files to include in the build for standalone C/C++ code generation.

File Extension Description

.c Custom C file

.cpp Custom C++ file

.h Custom header file

6-5

6 Generating C/C++ Code from MATLAB® Code

File Extension Description

.o , .obj Custom object file

.a , .lib, .so Library

.tmf Template makefile for custom
MATLAB Coder builds

6-6

Generating C/C++ Static Libraries from MATLAB® Code

Generating C/C++ Static Libraries from MATLAB Code

In this section...

“Generating a C Static Library Using the Project Interface” on page 6-7

“Generating a C Static Library at the Command Line” on page 6-8

Generating a C Static Library Using the Project
Interface
This example shows how to generate a C static library from MATLAB code
using a MATLAB Coder project.

In this example, you create a MATLAB function that generates a random
scalar value. You then create a MATLAB Coder project. Use the project user
interface to generate a C static library for the MATLAB code.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 In the same folder, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new mcadd.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link. Browse to the
file mcadd.m. Click OK to add the file to the project.

The file is displayed on the Overview tab. Both inputs are undefined.

3 Define the type of input u.

a On the Overview tab, select the input parameter u. To the right of this
parameter, click the Actions icon () to open the context menu.

b From the menu, select Define Type.

6-7

6 Generating C/C++ Code from MATLAB® Code

c In the Define Type dialog box, set Class to int16. Click OK to specify
that the input is a scalar int16.

4 Repeat step 3 for input v.

5 In the MATLAB Coder project, click the Build tab.

6 On this tab, set the Output type to C/C++ Static library.

The default output file name is mcadd.

7 Click the Build button to generate a library using the default project
settings.

MATLAB Coder builds the project and generates a C static library and
supporting files in the default folder, codegen/lib/mcadd. It generates
the minimal set of #include statements for header files required by the
selected code replacement library.

Generating a C Static Library at the Command Line
This example shows how to generate a C static library from MATLAB code
at the command line using the codegen function.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 Using the config:lib option, generate C library files. Using the -args
option, specify that the first input is a 1-by-4 vector of unsigned 16-bit
integers and that the second input is a double-precision scalar.

codegen -config:lib mcadd -args {zeros(1,4,'uint16'),0}

MATLAB Coder generates a C static library with the default name, mcadd,
and supporting files in the default folder, codegen/lib/mcadd. It generates
the minimal set of #include statements for header files required by the
selected code replacement library.

6-8

Generating C/C++ Dynamically Linked Libraries from MATLAB® Code

Generating C/C++ Dynamically Linked Libraries from
MATLAB Code

In this section...

“About Dynamic Libraries Generated by MATLAB® Coder™” on page 6-9

“Generating a C Dynamically Linked Library (DLL) Using the Project
Interface” on page 6-9

“Generating a C Dynamic Library at the Command Line” on page 6-11

About Dynamic Libraries Generated by MATLAB
Coder
By default, when MATLAB Coder generates a dynamic library (DLL):

• The DLL is suitable for the platform that you are working on.

• The DLL uses the release version of the C runtime library.

• The DLL linkage conforms to the target language, by default, C. If you set
the target language to C++, the linkage conforms to C++.

• When the target language is C, the generated header files explicitly declare
the exported functions to be extern "C" to simplify integration of the DLL
into C++ applications.

If you generate a DLL that uses dynamically allocated variable-size data,
MATLAB Coder automatically provides exported utility functions to interact
with this data in the generated code. For more information, see .

Generating a C Dynamically Linked Library (DLL)
Using the Project Interface
This example shows how to generate a C DLL from MATLAB code using a
MATLAB Coder project.

In this example, you create a MATLAB function that generates a random
scalar value. You then create a MATLAB Coder project. Use the project user
interface to generate a C dynamic library for the MATLAB code.

6-9

6 Generating C/C++ Code from MATLAB® Code

1 Write two MATLAB functions, ep1 takes one input, a single scalar, and
ep2 takes two inputs, both double scalars. In a local writable folder, create
a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

2 In the same folder as the ep1 and ep2 files, set up a MATLAB Coder
project. At the MATLAB command line, enter:

coder -new ep.prj

By default, the project opens in the MATLAB workspace on the right side.

3 On the project Overview tab, click the Add files link and browse to the
file ep1.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates that
input u is undefined.

4 Define the type of input u.

a On the Overview tab, select the input parameter u. To the right of this
parameter, click the Actions icon () to open the context menu.

b From the menu, select Define Type.

c In the Define Type dialog box, set Class to single. Click OK to specify
that the input is a single scalar.

5 On the project Overview tab, click the Add files link and browse to the
file ep2.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates that
inputs u and v are undefined.

6 Define the type of input u.

6-10

Generating C/C++ Dynamically Linked Libraries from MATLAB® Code

a On the Overview tab, select the input parameter u. To the right of this
parameter, click the Actions icon () to open the context menu.

b From the menu, select Define Type.

c In the Define Type dialog box, click OK to specify that the input is
a double scalar.

7 Define the type of input v.

a On the Overview tab, select the input parameter v. To the right of this
parameter, click the Actions icon () to open the context menu.

b From the menu, select Define Type.

c In the Define Type dialog box, click OK to specify that the input is
a double scalar.

8 In the MATLAB Coder project, click the Build tab.

9 On the Build tab, set the Output type to C/C++ Dynamic Library.

10 On the Build tab, click the Build button to generate a library using these
project settings.

On Microsoft® Windows systems, MATLAB Coder generates a C
dynamic library, ep1.dll, and supporting files, in the default folder,
codegen/dll/coderand. It generates the minimal set of #include
statements for header files required by the selected code replacement
library. On Linux® and Macintosh® systems, it generates a shared object
(.so) file. The DLL linkage conforms to the target language, in this example,
C. If you set the target language to C++, the linkage conforms to C++.

Generating a C Dynamic Library at the Command
Line
This example shows how to generate a C dynamic library from MATLAB code
at the command line using the codegen function.

1 Write two MATLAB functions, ep1 takes one input, a single scalar, and
ep2 takes two inputs, both double scalars. In a local writable folder, create
a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen

6-11

6 Generating C/C++ Code from MATLAB® Code

y = u;

In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

2 Generate the C dynamic library.

codegen -config:dll ep1 -args single(0) ep2 -args {0,0}

On Microsoft Windows systems, codegen generates a C dynamic
library, ep1.dll, and supporting files, in the default folder,
codegen/dll/coderand. It generates the minimal set of #include
statements for header files required by the selected code replacement
library. On Linux and Macintosh systems, it generates a shared object (.so)
file. The DLL linkage conforms to the target language, in this example, C.
If you set the target language to C++, the linkage conforms to C++.

Note The default target language is C. To change the target language to
C++, see “Specifying a Language for Code Generation” on page 6-22.

6-12

Generating Standalone C/C++ Executables from MATLAB® Code

Generating Standalone C/C++ Executables from MATLAB
Code

In this section...

“Generating a C Executable Using the Project Interface” on page 6-13

“Generating a C Executable at the Command Line” on page 6-15

“Specifying main Functions for C/C++ Executables” on page 6-17

“How to Specify main Functions” on page 6-17

Generating a C Executable Using the Project Interface
In this example, you create a MATLAB function that generates a random
scalar value and a main C function that calls this MATLAB function. You
then create a MATLAB Coder project. Use the project user interface to specify
types for the function input parameters, specify the main function, and
generate a C executable for the MATLAB code.

1 Write a MATLAB function, coderand, that generates a random scalar
value from the standard uniform distribution on the open interval (0,1):

function r = coderand() %#codegen
r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For
example:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "coderand.h"
#include "coderand_initialize.h"
#include "coderand_terminate.h"

int main()
{

coderand_initialize();

6-13

6 Generating C/C++ Code from MATLAB® Code

printf("coderand=%g\n", coderand());

coderand_terminate();

return 0;
}

Note In this example, because the default file partitioning
method is to generate one file for each MATLAB file, you include
coderand_initialize.h and coderand_terminate.h. If your file
partitioning method is set to generate one file for all functions, do not
include coderand_initialize.h and coderand_terminate.h.

3 In the same folder as the coderand file, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new coderand.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link and browse to
the file coderand.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates
that the coderand function has no inputs.

4 In the MATLAB Coder project, click the Build tab.

a Set the Output type to C/C++ Executable.

b Set the output file name to coderand_exe.

5 On the project Build tab, click the More settings link.

6 On the Project Settings dialog box Custom Code tab, under Additional
files and directories to be built, set:

a Source files to main.c, which is the name of the C/C++ source file that
contains the main function.

6-14

Generating Standalone C/C++ Executables from MATLAB® Code

b Include directories to the location of main.c: c:\myfiles.

c Close the dialog box.

Note When you are building an executable, you must specify the main
function . For more information, see “Specifying main Functions for C/C++
Executables” on page 6-17.

7 On the Build tab, click the Build button to generate a library using the
default project settings.

MATLAB Coder compiles and links the main function with the C code
that it generates for the project and, in the current folder, generates an
executable, coderand_exe. It generates supporting files in the default
folder, codegen/exe/coderand. MATLAB Coder generates the minimal
set of #include statements for header files required by the selected code
replacement library.

See Also

• Chapter 3, “Setting Up a MATLAB® Coder™ Project”

• Chapter 4, “Preparing MATLAB Code for C/C++ Code Generation”

• Chapter 5, “Testing MEX Functions in MATLAB”

• “Build Setting Configuration” on page 6-19

• “C/C++ Code Generation” on page 6-5

• “Code Optimization” on page 6-59

Generating a C Executable at the Command Line
In this example, you create a MATLAB function that generates a random
scalar value and a main C function that calls this MATLAB function. You
then specify types for the function input parameters, specify the main
function, and generate a C executable for the MATLAB code.

1 Write a MATLAB function, coderand, that generates a random scalar
value from the standard uniform distribution on the open interval (0,1):

6-15

6 Generating C/C++ Code from MATLAB® Code

function r = coderand() %#codegen
r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For
example:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "coderand.h"
#include "coderand_initialize.h"
#include "coderand_terminate.h"

int main()
{

coderand_initialize();

printf("coderand=%g\n", coderand());

coderand_terminate();

return 0;
}

Note In this example, because the default file partitioning
method is to generate one file for each MATLAB file, you include
coderand_initialize.h and coderand_terminate.h . If your file
partitioning method is set to generate one file for all functions, do not
include coderand_initialize.h and coderand_terminate.h .

3 Configure your code generation parameters to include the main C function
and then generate the C executable:

cfg = coder.config('exe');
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg coderand

6-16

Generating Standalone C/C++ Executables from MATLAB® Code

codegen generates a C executable, coderand.exe, in the current folder. It
generates supporting files in the default folder, codegen/exe/coderand.
codegen generates the minimal set of #include statements for header files
required by the selected code replacement library.

Specifying main Functions for C/C++ Executables
When you generate an executable, you must provide a main function. If you
are generating a C executable, provide a C file, main.c. If you are generating
a C++ executable, provide a C++ file, main.cpp. Verify that the folder
containing the main function has only one main file. Otherwise, main.c takes
precedence over main.cpp, which causes an error when generating C++
code. You can specify the main file from the project settings dialog box, the
command line, or the Code Generation dialog box.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder automatically generates an initialize function
and a terminate function.

• If your file partitioning method is set to generate one file for each MATLAB
file, you must include the initialize and terminate header functions in
main.c. Otherwise, do not include them in main.c.

• You must call these functions along with the C/C++ function. For more
information, see “Calling Initialize and Terminate Functions” on page 7-7.

How to Specify main Functions

Specifying main Functions in the Project Settings Dialog Box

1 On the project Build tab, click the More settings link to open the Project
Settings dialog box.

2 On the Custom Code tab, set:

a Additional source files to the name of the C/C++ source file that
contains the main function. For example, main.c. For more information,
see “Specifying main Functions for C/C++ Executables” on page 6-17.

b Additional include directories to the location of main.c. For
example, c:\myfiles.

6-17

6 Generating C/C++ Code from MATLAB® Code

Specifying main Functions at the Command Line
Set the CustomSource and CustomInclude properties of the code generation
configuration object (see “Working with Configuration Objects” on page 6-28).
The CustomInclude property indicates the location of C/C++ files specified
by CustomSource.

1 Create a configuration object for an executable:

cfg = coder.config('exe');

2 Set the CustomSource property to the name of the C/C++ source file that
contains the main function. (For more information, see “Specifying main
Functions for C/C++ Executables” on page 6-17.) For example:

cfg.CustomSource = 'main.c';

3 Set the CustomInclude property to the location of main.c. For example:

cfg.CustomInclude = 'c:\myfiles';

4 Generate the C/C++ executable using the command line options. For
example, if myFunction takes one input parameter of type double:

codegen -config cfg myMFunction -args {0}

MATLAB Coder compiles and links the main function with the C/C++ code
that it generates from myMFunction.m.

6-18

Build Setting Configuration

Build Setting Configuration

In this section...

“Output Type Specification” on page 6-19

“Specifying a Language for Code Generation” on page 6-22

“Output File Name Specification” on page 6-24

“Specifying Output File Locations” on page 6-25

“Parameter Specification Methods” on page 6-26

“How to Specify Build Configuration Parameters” on page 6-26

Output Type Specification

Output Types
MATLAB Coder can generate code for the following output types:

• MEX function

• Standalone C/C++ code and compile it to a static library

• Standalone C/C++ code and compile it to a dynamically-linked library

• Standalone C/C++ code and compile it to an executable

Note When you generate an executable, you must provide a C/C++ file
that contains the main function, as described in “Specifying main Functions
for C/C++ Executables” on page 6-17.

Location of Generated Files
By default, MATLAB Coder generates files in output folders based on your
output type. For more information, see “Generated Files and Locations” on
page 6-122.

6-19

6 Generating C/C++ Code from MATLAB® Code

Note Each time MATLAB Coder generates the same type of output for the
same code or project, it removes the files from the previous build. If you
want to preserve files from a build, copy them to a different location before
starting another build.

Specifying the Output Type Using the MATLAB Coder Project
Interface
On the MATLAB Coder project Build tab, set Output type to one of the
available output types:

• MEX Function (default)

• C/C++ Static Library

• C/C++ Dynamic Library

• C/C++ Executable

MEX functions use a different set of configuration parameters than C/C++
libraries and executables. When you switch the output type between MEX
Function and C/C++ Static Library, C/C++ Dynamic Library or C/C++
Executable, verify these settings. For more information, see “Changing
Output Type” on page 3-40.

Specifying the Output Type at the Command Line
Call codegen with the -config option. For example, suppose you have a
primary function foo that takes no input parameters. The following table
shows how to specify different output types when compiling foo. If a primary
function has input parameters, you must specify these inputs. For more
information, see “Primary Function Input Specification” on page 6-34.

Note C is the default language for code generation with MATLAB Coder.
To generate C++ code, see “Specifying a Language for Code Generation” on
page 6-22.

6-20

Build Setting Configuration

To Generate: Use This Command:

MEX function using the default
code generation options codegen foo

MEX function specifying code
generation options cfg = coder.config('mex');

% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and
compile it to a library using the
default code generation options

codegen -config:lib foo

Standalone C/C++ code and
compile it to a library specifying
code generation options

cfg = coder.config('lib');
% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and
compile it to an executable using
the default code generation
options and specifying the
main.c file at the command line

codegen -config:exe main.c foo

Note You must specify a main function for generating a
C/C++ executable. See “Specifying main Functions for C/C++
Executables” on page 6-17

6-21

6 Generating C/C++ Code from MATLAB® Code

To Generate: Use This Command:

Standalone C/C++ code and
compile it to an executable
specifying code generation
options

cfg = coder.config('exe');
% Set configuration parameters, for example,
% specify main file
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg foo

Note You must specify a main function for generating a
C/C++ executable. See “Specifying main Functions for C/C++
Executables” on page 6-17

Specifying a Language for Code Generation

• “Specifying a Language for Code Generation in the Project Settings Dialog
Box” on page 6-22

• “Specifying a Language for Code Generation at the Command Line” on
page 6-23

MATLAB Coder can generate C or C++ libraries and executables. C is the
default language. You can specify a language explicitly from the project
settings dialog box or at the command line.

Specifying a Language for Code Generation in the Project
Settings Dialog Box

1 Select a suitable compiler for your target language.

2 On the MATLAB Coder project Build tab, click the More settings link to
open the Project Settings dialog box.

3 On the All Settings tab, in the Advanced group, set Language to C or
C++.

6-22

Build Setting Configuration

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files so that you can use a C++ compiler and interface with external C++
applications. It does not generate C++ classes.

See Also.

• “Setting Up the C/C++ Compiler”

• Chapter 3, “Setting Up a MATLAB® Coder™ Project”

Specifying a Language for Code Generation at the Command
Line

1 Select a suitable compiler for your target language.

2 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

3 Set the TargetLang property to 'C' or 'C++'. For example:

cfg.TargetLang = 'C++';

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files so that you can use a C++ compiler and interface with external C++
applications. It does not generate C++ classes.

See Also.

• “Working with Configuration Objects” on page 6-28

• “Setting Up the C/C++ Compiler”

6-23

6 Generating C/C++ Code from MATLAB® Code

Output File Name Specification

Specifying Output File Name in a Project
On the project Build tab, in the Output File Name field, enter the file name.
The file name can include an existing path.

Note Do not put any spaces in the file name.

By default, if the name of the first entry-point MATLAB file is fcn1, the
output file name is:

• fcn1 for C/C++ libraries and executables.

• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• project_folder is your current project folder

• target is:

- mex for MEX functions

- lib for static C/C++ libraries

- dll for dynamic C/C++ libraries

- exe for C/C++ executables

Command Line Alternative
Use the codegen function -o option.

6-24

Build Setting Configuration

Specifying Output File Locations

Specifying Output File Location in a Project
The output file location should not contain:

• Spaces, as this can lead to code generation failures in certain operating
system configurations.

• Non 7-bit ASCII characters, such as Japanese characters.

1 On the project Build tab, click More settings.

2 In the Project Settings dialog box, click the Paths tab.

The default setting for the Build Folder field is A subfolder of the
project folder. By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• fcn1 is the name of the first entry-point file

• target is:

– mex for MEX functions

– lib for static C/C++ libraries

– dll for dynamically-linked C/C++ libraries

– exe for C/C++ executables

3 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working
folder

MATLAB Coder generates files in the
MATLAB_working_folder/codegen/target/fcn1 folder

• Set Build Folder to Specified folder. In the Build folder name
field, provide the path to the folder.

Command Line Alternative
Use the codegen function -d option.

6-25

6 Generating C/C++ Code from MATLAB® Code

Parameter Specification Methods

If you are using... Use... Details

A MATLAB Coder project The Project Settings dialog box “Specifying Build
Configuration Parameters
in the Project Settings Dialog
Box” on page 6-26

codegen at the command line
and want to specify a small
number of parameters

codegen in build scripts

Configuration objects “Specifying Build
Configuration Parameters
at the Command Line Using
Configuration Objects” on
page 6-27

codegen at the command line
and want to specify a large
number of parameters

Configuration object dialog
boxes

“Specifying Build
Configuration Parameters
at the Command Line Using
Dialog Boxes” on page 6-33

How to Specify Build Configuration Parameters

• “Specifying Build Configuration Parameters in the Project Settings Dialog
Box” on page 6-26

• “Specifying Build Configuration Parameters at the Command Line Using
Configuration Objects” on page 6-27

• “Specifying Build Configuration Parameters at the Command Line Using
Dialog Boxes” on page 6-33

You can specify build configuration parameters from the MATLAB Coder
project settings dialog box, the command line, or configuration object dialog
boxes.

Specifying Build Configuration Parameters in the Project
Settings Dialog Box

1 On the MATLAB Coder project Build tab, click More settings.

6-26

Build Setting Configuration

The Project Settings dialog box opens. This dialog box provides the set of
configuration parameters applicable to the output type that you select.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you switch the output type between
MEX Function and C/C++ Static Library , C/C++ Dynamic Library
or C/C++ Executable, verify these settings. For more information, see
“Changing Output Type” on page 3-40.

2 Modify the parameters as required. For more information about parameters
on a tab, click the Help button.

Changes to the parameter settings take place immediately.

3 After specifying the build parameters, you can generate code by clicking
the Build button on the same tab.

Specifying Build Configuration Parameters at the Command
Line Using Configuration Objects

Types of Configuration Objects. The codegen function uses configuration
objects to customize your environment for code generation. The following
table lists the available configuration objects.

Configuration Object Description

coder.CodeConfig If no Embedded Coder license is available or you
disable use of the Embedded Coder license, specifies
parameters for C/C++ library or executable generation.

For more information, see the class reference
information for coder.CodeConfig.

coder.EmbeddedCodeConfig If an Embedded Coder license is available, specifies
parameters for C/C++ library or executable generation.

For more information, see the class reference
information for coder.EmbeddedCodeConfig.

6-27

6 Generating C/C++ Code from MATLAB® Code

Configuration Object Description

coder.HardwareImplementation Specifies parameters of the target hardware
implementation. If not specified, codegen generates
code that is compatible with the MATLAB host
computer.

For more information, see the class reference
information for coder.HardwareImplementation.

coder.MexCodeConfig Specifies parameters for MEX code generation.

For more information, see the class reference
information for coder.MexCodeConfig.

Working with Configuration Objects. To use configuration objects to
customize your environment for code generation:

1 In the MATLAB workspace, define configuration object variables, as
described in “Creating Configuration Objects” on page 6-30.

For example, to generate a configuration object for C static library
generation:

cfg = coder.config('lib');
% Returns a coder.CodeConfig object if no
% Embedded Coder license available.
% Otherwise, returns a coder.EmbeddedCodeConfig object.

2 Modify the parameters of the configuration object as required, using one of
these methods:

• Interactive commands, as described in “Specifying Build Configuration
Parameters at the Command Line Using Configuration Objects” on page
6-27

• Dialog boxes, as described in “Specifying Build Configuration Parameters
at the Command Line Using Dialog Boxes” on page 6-33

3 Call the codegen function with the -config option. Specify the
configuration object as its argument.

6-28

Build Setting Configuration

The -config option instructs codegen to generate code for the target,
based on the configuration property values. In the following example,
codegen generates a C static library from a MATLAB function, foo, based
on the parameters of a code generation configuration object, cfg, defined
in the first step:

codegen -config cfg foo

The -config option specifies the type of output that you want to build — in
this case, a C static library. For more information, see codegen.

6-29

6 Generating C/C++ Code from MATLAB® Code

Creating Configuration Objects. You can define a configuration object
in the MATLAB workspace.

To Create... Use a Command Such As...

MEX configuration object

coder.MexCodeConfig

cfg = coder.config('mex');

Code generation configuration
object for generating a standalone
C/C++ library or executable

coder.CodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note If an Embedded Coder license is available, creates a
coder.EmbeddedCodeConfig object.

If you use concurrent licenses, to disable check out of an
Embedded Coder license, use one of the following commands:

cfg = coder.config('lib', 'ecoder', false)

cfg = coder.config('dll', 'ecoder', false)

cfg = coder.config('exe', 'ecoder', false)

6-30

Build Setting Configuration

To Create... Use a Command Such As...

Code generation configuration
object for generating a standalone
C/C++ library or executable for an
embedded target

coder.EmbeddedCodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note Requires an Embedded Coder license; otherwise
creates a coder.CodeConfig object.

Hardware implementation
configuration object

coder.HardwareImplementation

hwcfg = coder.HardwareImplementation

Each configuration object comes with a set of parameters, initialized to
default values. You can change these settings, as described in “Modifying
Configuration Objects at the Command Line Using Dot Notation” on page
6-31.

Modifying Configuration Objects at the Command Line Using Dot
Notation. You can use dot notation to modify the value of one configuration
object parameter at a time. Use this syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object
properties:

• To specify a main function during C/C++ code generation:

cfg = coder.config('exe');
cfg.CustomInclude = 'c:\myfiles';
cfg.CustomSource = 'main.c';
codegen -config cfg foo

6-31

6 Generating C/C++ Code from MATLAB® Code

• To automatically generate and launch code generation reports after
generating a C/C++ static library:

cfg = coder.config('lib');
cfg.GenerateReport= true;
cfg.LaunchReport = true;
codegen -config cfg foo

Saving Configuration Objects. Configuration objects do not automatically
persist between MATLAB sessions. Use one of the following methods to
preserve your settings:

Save a configuration object to a MAT-file and then load the MAT-file
at your next session

For example, assume you create and customize a MEX configuration object
mexcfg in the MATLAB workspace. To save the configuration object, at the
MATLAB prompt, enter:

save mexcfg.mat mexcfg

The save command saves mexcfg to the file mexcfg.mat in the current folder.

To restore mexcfg in a new MATLAB session, at the MATLAB prompt, enter:

load mexcfg.mat

The load command loads the objects defined in mexcfg.mat to the MATLAB
workspace.

Write a script that creates the configuration object and sets its
properties.

You can rerun the script whenever you need to use the configuration object
again.

6-32

Build Setting Configuration

Specifying Build Configuration Parameters at the Command
Line Using Dialog Boxes

1 Create a configuration object as described in “Creating Configuration
Objects” on page 6-30.

For example, to create a coder.MexCodeConfig configuration object for
MEX code generation:

mexcfg = coder.config('mex');

2 Open the property dialog box using one of these methods:

• In the MATLAB workspace, double-click the configuration object
variable.

• At the MATLAB prompt, issue the open command, passing it the
configuration object variable, as in this example:

open mexcfg

3 In the dialog box, modify configuration parameters as required, then click
Apply.

4 Call the codegen function with the -config option. Specify the
configuration object as its argument:

codegen -config mexcfg foo

The -config option specifies the type of output that you want to build.
For more information, see codegen.

6-33

6 Generating C/C++ Code from MATLAB® Code

Primary Function Input Specification

In this section...

“Why You Must Specify Input Properties” on page 6-34

“Properties to Specify” on page 6-34

“Rules for Specifying Properties of Primary Inputs” on page 6-38

“Methods for Defining Properties of Primary Inputs” on page 6-39

“Defining Input Properties by Example at the Command Line” on page 6-40

“Defining Input Properties Programmatically in the MATLAB File” on page
6-46

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB Coder must
determine the properties of all variables in the MATLAB files at compile time.
To infer variable properties in MATLAB files, MATLAB Coder must be able to
identify the properties of the inputs to the primary function, also known as
the top-level or entry-point function. Therefore, if your primary function has
inputs, you must specify the properties of these inputs, to MATLAB Coder. If
your primary function has no input parameters, MATLAB Coder can compile
your MATLAB file without modification. You do not need to specify properties
of inputs to subfunctions or external functions called by the primary function.

If you use the tilde (~) character to specify unused function inputs:

• In MATLAB Coder projects, if you want a different type to appear in the
generated code, specify the type. Otherwise, the inputs default to real,
scalar doubles.

• When generating code with codegen, you must specify the type of these
inputs using the -args option.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input.

6-34

Primary Function Input Specification

For... Specify properties...

Class Size Complexity numerictype fimath

Fixed-point
inputs

Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, MATLAB Coder treats each field as a
separate input. Therefore, you must specify properties for all fields of a primary
structure input in the order that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

All other
inputs

Default Property Values
MATLAB Coder assigns the following default values for properties of primary
function inputs.

Property Default

class double

size scalar

complexity real

numerictype No default

fimath MATLAB default fimath object

6-35

6 Generating C/C++ Code from MATLAB® Code

Specifying Default Values for Structure Fields. In most cases, when you
don’t explicitly specify values for properties, MATLAB Coder uses defaults
except for structure fields. The only way to name a field in a structure is
to set at least one of its properties. Therefore, you might need to specify
default values for properties of structure fields. For examples, see “Example:
Specifying Class and Size of Scalar Structure” on page 6-55 and “Example:
Specifying Class and Size of Structure Array” on page 6-56.

Specifying Default fimath Values for MEX Functions. MEX functions
generated with MATLAB Coder use the default fimath value in effect at
compile time. If you do not specify a default fimath value, MATLAB Coder
uses the MATLAB default global fimath. The MATLAB factory default has
the following properties:

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

For more information, see in the Fixed-Point Toolbox documentation.

When running MEX functions that depend on the MATLAB default fimath
value, do not change this value during your MATLAB session. Otherwise, you
receive a run-time error, alerting you to a mismatch between the compile-time
and run-time fimath values.

For example, suppose you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath
object. Therefore, test relies on the default fimath object in effect at compile
time. At the MATLAB prompt, generate the MEX function text_mex to use
the factory setting of the MATLAB default fimath:

resetglobalfimath;
codegen test
% codegen generates a MEX function, test_mex,

6-36

Primary Function Input Specification

% in the current folder

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

Now modify the MATLAB default fimath value so it no longer matches the
factory setting used at compile time:

F = fimath('RoundMode','Floor');
globalfimath(F);

Finally, clear the MEX function from memory and rerun it:

clear test_mex
test_mex

The mismatch is detected and causes an error:

??? This function was generated with a different default
fimath than the current default.

Error in ==> test_mex

Supported Classes
The following table presents the class names supported by MATLAB Coder.

Class Name Description

logical Logical array of true and false values

char Character array

6-37

6 Generating C/C++ Code from MATLAB® Code

Class Name Description

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

struct Structure array

embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the
size or complexity of primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must
specify the input numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

6-38

Primary Function Input Specification

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages

“Specifying Properties
of Primary Function
Inputs in a Project”
on page 3-7

• If you are working in a MATLAB
Coder project, easy to use

• Does not alter original MATLAB
code

• MATLAB Coder saves the
definitions in the project file

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Defining Input
Properties by
Example at the
Command Line” on
page 6-40

Note If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method

• Easy to use

• Does not alter original MATLAB
code

• Designed for prototyping a
function that has a small
number of primary inputs

• Must be specified at the
command line every time you
invoke codegen (unless you use
a script)

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Defining Input
Properties
Programmatically
in the MATLAB File”
on page 6-46

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke MATLAB
Coder

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

• MATLAB Coder project
files do not currently
recognize properties defined
programmatically. If you are
using a project, you must
reenter the input types in the
project.

6-39

6 Generating C/C++ Code from MATLAB® Code

Defining Input Properties by Example at the
Command Line

• “Command Line Option -args” on page 6-40

• “Rules for Using the -args Option” on page 6-40

• “Specifying Constant Inputs at the Command Line” on page 6-41

• “Specifying Variable-Size Inputs at the Command Line” on page 6-42

• “Example: Specifying Properties of Primary Inputs by Example at the
Command Line” on page 6-44

• “Example: Specifying Properties of Primary Fixed-Point Inputs by Example
at the Command Line” on page 6-45

Command Line Option -args
The codegen function provides a command-line option -args for specifying
the properties of primary (entry-point) function inputs as a cell array of
example values. The cell array can be a variable or literal array of constant
values. Using this option, you specify the properties of inputs at the same
time as you generate code for the MATLAB function with codegen. If you
have a test function or script that calls the entry-point MATLAB function with
the required types, you can use coder.getArgTypes to determine the types of
the function inputs. coder.getArgTypes returns a cell array of coder.Type
objects that you can pass to codegen using the -args option. For more
information, see the coder.getArgTypes function reference information.

See “Example: Specifying General Properties of Primary Inputs” on page
6-54 for codegen.

Rules for Using the -args Option
When using the -args command-line option to define properties by example,
follow these rules:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the

6-40

Primary Function Input Specification

first element in the cell array defines the properties of the first primary
function input.

Note If you specify an empty cell array with the -args option, codegen
interprets this to mean that the function takes no inputs; a compile-time error
occurs if the function does have inputs.

Specifying Constant Inputs at the Command Line
In cases where you know your primary inputs will not change at run time,
it is more efficient to specify them as constant values than as variables to
eliminate unnecessary overhead in generated code. Common uses of constant
inputs are for flags that control how an algorithm executes and values that
specify the sizes or types of data.

You can define inputs to be constants using the -args command-line option
with a coder.Constant object, as in this example:

-args {coder.Constant(constant_input)}

This expression specifies that an input will be a constant with the size, class,
complexity, and value of constant_input.

Calling Functions with Constant Inputs. codegen compiles constant
function inputs into the generated code. As a result, the MEX function
signature differs from the MATLAB function signature. At run time you
supply the constant argument to the MATLAB function, but not to the MEX
function.

For example, consider the following function identity which copies its input
to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, at the
MATLAB prompt, type the following command:

codegen identity -args {coder.Constant(42)}

6-41

6 Generating C/C++ Code from MATLAB® Code

To run the MATLAB function, supply the constant argument:

identity(42)

You get the following result:

ans =

42

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

Example: Specifying a Structure as a Constant Input. Suppose you
define a structure tmp in the MATLAB workspace to specify the dimensions
of a matrix:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define
matrix y:

function y = rowcol(u,p) %#codegen
y = zeros(p.rows,p.cols) + u;

The following example shows how to specify that primary input u is a double
scalar variable and primary input p is a constant structure:

codegen rowcol -args {0,coder.Constant(tmp)}

Specifying Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.
Bounded variable-size data has fixed upper bounds. This data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds. This data must be allocated on the
heap. You can define inputs to have one or more variable-size dimensions —

6-42

Primary Function Input Specification

and specify their upper bounds — using the -args option and coder.typeof
function:

-args {coder.typeof(example_value, size_vector, variable_dims}

Specifies a variable-size input with:

• Same class and complexity as example_value

• Same size and upper bounds as size_vector

• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size
vector for dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the
following exceptions:

• If the dimension is 1 or 0, which are fixed.

• If the dimension is unbounded, which is always variable size.

For more information, see coder.typeof and “Code Generation for
Variable-Size Data” on page 6-95.

Example: Specifying a Variable-Size Vector Input.

1 Write a function that computes the average of every n elements of a vector
A and stores them in a vector B:

function B = nway(A,n) %#codegen
% Compute average of every N elements of A and put them in B.

coder.extrinsic('error');
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end

6-43

6 Generating C/C++ Code from MATLAB® Code

else
B = zeros(1,0);
error('n <= 0 or does not divide number of elements evenly');

end

2 Specify the first input A as a vector of double values. Its first dimension
stays fixed in size and its second dimension can grow to an upper bound of
100. Specify the second input n as a double scalar.

codegen -report nway -args {coder.typeof(0,[1 100],1),1}

3 As an alternative, assign the coder.typeof expression to a MATLAB
variable, then pass the variable as an argument to -args:

vareg = coder.typeof(0,[1 100],1)
codegen -report nway -args {vareg, 0}

Example: Specifying Properties of Primary Inputs by Example
at the Command Line
Consider a MATLAB function that adds its two inputs:

function y = mcf(u,v)
%#codegen
y = u + v;

The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real
scalar doubles:

codegen mcf -args {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar double:

codegen mcf -args {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

6-44

Primary Function Input Specification

a = uint8([1;2;3;4])
b = uint8([5;6;7;8])
ex = {a,b}
codegen mcf -args ex

Example: Specifying Properties of Primary Fixed-Point Inputs
by Example at the Command Line
To generate a MEX function or C/C++ code for fixed-point MATLAB code, you
must install Fixed-Point Toolbox software.

Consider a MATLAB function that calculates the square root of a fixed-point
number:

%#codegen
function y = sqrtfi(x)
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...
'FractionLength',23,...
'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...
'SumWordLength',32,...
'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,...
'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

6-45

6 Generating C/C++ Code from MATLAB® Code

4 Compile the function sqrtfi using the codegen command, passing the
variable myeg as the argument to the -args option, as in this example:

codegen sqrtfi -args myeg;

Defining Input Properties Programmatically in the
MATLAB File
With MATLAB Coder, you use the MATLAB assert function to define
properties of primary function inputs directly in your MATLAB file.

• “How to Use assert with MATLAB® Coder™” on page 6-46

• “Rules for Using assert Function” on page 6-53

• “Example: Specifying General Properties of Primary Inputs” on page 6-54

• “Example: Specifying Properties of Primary Fixed-Point Inputs” on page
6-54

• “Example: Specifying Class and Size of Scalar Structure” on page 6-55

• “Example: Specifying Class and Size of Structure Array” on page 6-56

How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

You must use one of the following methods when specifying input properties
using the assert function. Use the exact syntax that is provided; do not
modify it.

• “Specify Any Class” on page 6-47

• “Specify fi Class” on page 6-47

• “Specify Structure Class” on page 6-48

• “Specify Fixed Size” on page 6-48

• “Specify Scalar Size” on page 6-49

• “Specify Upper Bounds for Variable-Size Inputs” on page 6-49

• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 6-49

6-46

Primary Function Input Specification

• “Specify Size of Individual Dimensions” on page 6-50

• “Specify Real Input” on page 6-51

• “Specify Complex Input” on page 6-51

• “Specify numerictype of Fixed-Point Input” on page 6-51

• “Specify fimath of Fixed-Point Input” on page 6-52

• “Specify Multiple Properties of Input” on page 6-52

Specify Any Class.

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'int32'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 6-51.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 6-52. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order that they appear in the structure definition.

Specify fi Class.

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

6-47

6 Generating C/C++ Code from MATLAB® Code

or

...
assert(isa(U,'embedded.fi'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 6-51.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 6-52. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Structure Class.

assert (isstruct (param))
assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Fixed Size.

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

6-48

Primary Function Input Specification

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size.

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input
U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Upper Bounds for Variable-Size Inputs.

assert (all(size(param)<=[N0 N1 ...]));
assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set
the upper-bound size of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note You can also specify upper bounds for variable-size inputs using
coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions.

assert (all(size(param)>=[M0 M1 ...]));
assert (all(size(param)<=[N0 N1 ...]));

6-49

6 Generating C/C++ Code from MATLAB® Code

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input
parameter.

• For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

• To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

• Bounds must be non-negative.

To fix the size of the first dimension of input U to 3 and set the second
dimension as variable size with upper-bound of 2, call:

assert(all(size(U)>=[3 0]));
assert(all(size(U)<=[3 2]));

Specify Size of Individual Dimensions.

assert (size(param, k)==Nk);
assert (size(param, k)<=Nk);
assert (size(param, k)<Nk);

You can specify individual dimensions as well as specifying all dimensions
simultaneously or instead of specifying all dimensions simultaneously. The
following rules apply:

• You must specify the size of each dimension at least once.

• The last dimension specification takes precedence over earlier
specifications.

Sets the upper-bound size of dimension k of input parameter param. To set
the upper-bound size of the first dimension of input U to 3, call:

assert(size(U,1)<=3)

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

6-50

Primary Function Input Specification

Specify Real Input.

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is
real, call:

...
assert(isreal(U));
...

Specify Complex Input.

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U
is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input.

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of
fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

%#codegen
...
% Define the numerictype object.
T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

6-51

6 Generating C/C++ Code from MATLAB® Code

Specify fimath of Fixed-Point Input.

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

%#codegen
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

If you do not specify the fimath properties using assert, codegen uses the
MATLAB default fimath value.

Specify Multiple Properties of Input.

assert (function1 (params) &&
function2 (params) &&
function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#codegen
...
assert(isa(U,'double') &&

~isreal(U) &&
all(size(U) == [3 3]) &&
isa(V,'uint16'));

...

6-52

Primary Function Input Specification

Rules for Using assert Function
When using the assert function to specify the properties of primary function
inputs, follow these rules:

• Call assert functions at the beginning of the primary function, before any
control-flow operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• Use the assert function with MATLAB Coder only for specifying properties
of primary function inputs before converting your MATLAB code to C/C++
code.

• If you set the class of an input parameter to fi, you must also set its
numerictype. See “Specify numerictype of Fixed-Point Input” on page 6-51.
You can also set its fimath properties. See “Specify fimath of Fixed-Point
Input” on page 6-52. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of all fields in the order that they appear in the
structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

- You must also specify an upper-bound size for each dimension of the
input parameter.

- For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

- To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

- Bounds must be non-negative.

• If you specify individual dimensions, the following rules apply:

- You must specify the size of each dimension at least once.

- The last dimension specification takes precedence over earlier
specifications.

6-53

6 Generating C/C++ Code from MATLAB® Code

Example: Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram
takes two inputs: pennywhistle and win. The code specifies the following
properties for these inputs:

Input Property Value

class int16

size 220500-by-1 vector

pennywhistle

complexity real (by default)

class double

size 1024-by-1 vector

win

complexity real (by default)

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs
inside assert commands:

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double') && all(size(win) == [nfft 1]));

...

Example: Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Toolbox software.

6-54

Primary Function Input Specification

In the following example, the primary MATLAB function mcsqrtfi takes one
fixed-point input x. The code specifies the following properties for this input.

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

fimath fimath object F, as specified in the primary
function

size scalar

complexity real (by default)

function y = mcsqrtfi(x) %#codegen
T = numerictype('WordLength',32,'FractionLength',23,...

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Example: Specifying Class and Size of Scalar Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

Here is code that specifies the class and size of S and its fields when passed as
an input to your MATLAB function:

%#codegen
function y = fcn(S)

% Specify the class of the input as struct.

6-55

6 Generating C/C++ Code from MATLAB® Code

assert(isstruct(S));

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));
assert(isa(S.i,'int8');
...

In most cases, when you don’t explicitly specify values for properties,
MATLAB Coder uses defaults — except for structure fields. The only way
to name a field in a structure is to set at least one of its properties. As a
minimum, you must specify the class of a structure field

Example: Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 2-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

%#codegen
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [2 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its
properties. As a minimum, you must specify the class of all fields.

6-56

Speeding Up Compilation

Speeding Up Compilation

In this section...

“Generate Code Only” on page 6-57

“Disable Compiler Optimization” on page 6-57

Generate Code Only
If you select this option, MATLAB Coder does not invoke the make command
or generate compiled object code. When you want to iterate rapidly between
modifying MATLAB code and generating C/C++ code and you want to inspect
the generated code, this option saves you time during the development cycle .

In the Project Interface
On the project Build tab, select Generate code only.

At the Command Line
Use the codegen -c option to only generate code without invoking the make
command. For example, to generate code only for a function, foo, that takes
one single, scalar input:

codegen -c foo -args {single(0)}

For more information and a complete list of compilation options, see codegen.

Disable Compiler Optimization
Turning compiler optimizations off shortens compile time, but increases run
time.

In the Project Interface

1 On the MATLAB Coder project Build tab, verify that the Output type is
C/C++ Static Library, C/C++ Dynamic Library or C/C++ Executable.

2 On the Build tab, click the More settings link.

6-57

6 Generating C/C++ Code from MATLAB® Code

3 In the Project Settings dialog box All Settings tab, under Advanced,
set Compiler optimization level to Off.

At the Command Line

1 Create a code generation configuration object for C/C++ library or
executable. For example, for a static library:

cfg = coder.config('lib');

2 Set the CCompilerOptimization to Off.

cfg.CCompilerOptimization='Off';

6-58

Code Optimization

Code Optimization

In this section...

“Unrolling for-loops” on page 6-59

“Inlining Code” on page 6-61

“Eliminating Redundant Copies of Function Inputs (A=foo(A))” on page 6-62

“Rewriting Logical Array Indexing as a Loop” on page 6-64

Unrolling for-loops
Unrolling for-loops eliminates the loop logic by creating a separate copy of
the loop body in the generated code for each iteration. Within each iteration,
the loop index variable becomes a constant. By unrolling short loops with
known bounds at compile time, MATLAB generates highly optimized code
with no branches.

You can also force loop unrolling for individual functions by wrapping the loop
header in a coder.unroll function. For more information, see coder.unroll.

Limiting Copying the Body of a for-loop in Generated Code
To limit the number of times to copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a
vector of length n and assign random numbers to specific elements. Add a
test function test_unroll. This function calls getrand(n) with n equal
to values both less than and greater than the threshold for copying the
for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation

% Calling getrand 8 times triggers unroll
y1 = getrand(8);
% Calling getrand 50 times does not trigger unroll
y2 = getrand(50);

function y = getrand(n)

6-59

6 Generating C/C++ Code from MATLAB® Code

% Turn off inlining to make
% generated code easier to read
coder.inline('never');

% Set flag variable dounroll to repeat loop body
% only for fewer than 10 iterations
dounroll = n < 10;
% Declare size, class, and complexity
% of variable y by assignment
y = zeros(n, 1);
% Loop body begins
for i = coder.unroll(1:2:n, dounroll)

if (i > 2) && (i < n-2)
y(i) = rand();

end;
end;
% Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C static
library code for test_unroll :

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body
of the for-loop (unrolls the loop) because the number of iterations is less
than 10:

static void m_getrand(real_T y[8])
{

int32_T i0;
for(i0 = 0; i0 < 8; i0++) {

y[i0] = 0.0;
}
/* Loop body begins */
y[2] = m_rand();
y[4] = m_rand();
/* Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because
the number of iterations is greater than 10:

6-60

Code Optimization

static void m_b_getrand(real_T y[50])
{

int32_T i;
for(i = 0; i < 50; i++) {

y[i] = 0.0;
}
/* Loop body begins */
for(i = 0; i < 50; i += 2) {

if((i + 1 > 2) && (i + 1 < 48)) {
y[i] = m_rand();

}
}
/* Loop body ends */

}

Inlining Code
MATLAB uses internal heuristics to determine whether or not to inline
functions in the generated code. You can use the coder.inline directive to
fine-tune these heuristics for individual functions. For more information,
see coder.inline.

Preventing Function Inlining
In this example, function foo is not inlined in the generated code:

function y = foo(x)
coder.inline('never');
y = x;

end

Using Inlining in Control Flow Statements
You can use coder.inline in control flow code. If the software detects
contradictory coder.inline directives, the generated code uses the default
inlining heuristic and issues a warning.

Suppose you want to generate code for a division function that will be
embedded in a system with limited memory. To optimize memory use in the
generated code, the following function, inline_division, manually controls
inlining based on whether it performs scalar division or vector division:

6-61

6 Generating C/C++ Code from MATLAB® Code

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)

coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.

coder.inline('never');
end

if any(divisor == 0)
error('Can not divide by 0');

end

y = dividend / divisor;

Eliminating Redundant Copies of Function Inputs
(A=foo(A))
You can reduce the number of copies in your generated code by writing
functions that use the same variable as both an input and an output. For
example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a
variable acts as both input and output, MATLAB passes the variable by
reference in the generated code instead of redundantly copying the input to a
temporary variable. In the preceding example, input A is passed by reference
in the generated code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(real_T *A, real_T B)
{

*A *= B;
}

6-62

Code Optimization

...

The reference parameter optimization reduces memory usage and improves
run-time performance, especially when the variable passed by reference is
a large data structure. To achieve these benefits at the call site, call the
function with the same variable as both input and output.

By contrast, suppose you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

MATLAB generates code that passes the inputs by value and returns the
value of the output:

...
/* Function Definitions */
real_T foo2(real_T A, real_T B)
{

return A * B;
}
...

In some cases, the output of the function cannot be a modified version of its
inputs. If you do not use the inputs later in the function, you can modify
your code to operate on the inputs instead of on a copy of the inputs. One
method is to create additional return values for the function. For example,
consider the code:

function y1=foo(u1) %#codegen
x1=u1+1;
y1=bar(x1);

end

function y2=bar(u2)
% Since foo does not use x1 later in the function,
% it would be optimal to do this operation in place
x2=u2.*2;
% The change in dimensions in the following code
% means that it cannot be done in place

6-63

6 Generating C/C++ Code from MATLAB® Code

y2=[x2,x2];
end

You can modify this code to eliminate redundant copies. The changes are
highlighted in bold.

function y1=foo(u1) %#codegen
u1=u1+1;
[y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)
u2=u2.*2;

% The change in dimensions in the following code
% still means that it cannot be done in place
y2=[u2,u2];

end

Rewriting Logical Array Indexing as a Loop
Rewriting logical array indexing as a loop can optimize the generated C/C++
code for both speed and readability. For example, the MATLAB function, foo,
uses logical array indexing.

function x = foo(x,N) %#codegen
assert(all(size(x) == [1 100]))
x(x>N) = N;

The generated C code for this function is not very efficient. Rewrite the
MATLAB code to use a loop instead of logical indexing:

function x = foo_rewrite(x,N) %#codegen
assert(all(size(x) == [1 100]))
for ii=1:numel(x)

if x(ii) > N
x(ii) = N;

end
end

6-64

Paths and File Infrastructure Setup

Paths and File Infrastructure Setup

In this section...

“Compile Path Search Order” on page 6-65

“Specifying Folders to Search for Custom Code” on page 6-65

“Naming Conventions” on page 6-66

Compile Path Search Order
MATLAB Coder resolves MATLAB functions by searching first on the code
generation path and then on the MATLAB path. The code generation path
contains the current folder and the code generation libraries. By default,
unless you explicitly declare the function to be extrinsic, MATLAB Coder tries
to compile and generate code for functions it finds on the path. MATLAB
Coder does not compile extrinsic functions, but rather dispatches them
to the MATLAB interpreter for execution. See “How MATLAB Resolves
Function Calls in Generated Code” in the Code Generation from MATLAB
documentation.

Specifying Folders to Search for Custom Code
If you want to integrate custom code — such as source, header, and library
files — with the generated code, you can specify additional folder to search.
The following table describes how to specify these search paths. The path
should not contain spaces, as this can lead to code generation failures in
certain operating system configurations. If the path contains non 7-bit ASCII
characters, such as Japanese characters, MATLAB Coder might not be able to
find files on this path.

6-65

6 Generating C/C++ Code from MATLAB® Code

To specify
additional folders:

Do this:

Using the MATLAB
Coder interface

On the MATLAB Coder project Build tab:

1 Click the More settings link.

2 In the Project Settings dialog box, click the Paths
tab.

3 For the Search paths field, either browse to add
a folder to the search path or enter the full path.
The search path must not contain spaces.

At the command line Use the codegen function -I option.

Naming Conventions
MATLAB Coder enforces naming conventions for MATLAB functions and
generated files.

• “Reserved Prefixes” on page 6-66

• “Reserved Keywords” on page 6-66

• “Conventions for Naming Generated files” on page 6-70

Reserved Prefixes
MATLAB Coder reserves the prefix eml for global C/C++ functions and
variables in generated code. For example, MATLAB for code generation
run-time library function names all begin with the prefix emlrt, such as
emlrtCallMATLAB. To avoid naming conflicts, do not name C/C++ functions or
primary MATLAB functions with the prefix eml.

Reserved Keywords

• “C Reserved Keywords” on page 6-67

• “C++ Reserved Keywords” on page 6-67

• “Reserved Keywords for Code Generation” on page 6-68

6-66

Paths and File Infrastructure Setup

• “MATLAB® Coder™ Code Replacement Library Keywords” on page 6-68

MATLAB Coder software reserves certain words for its own use as keywords
of the generated code language. MATLAB Coder keywords are reserved for
use internal to MATLAB Coder software and should not be used in MATLAB
code as identifiers or function names. C reserved keywords should also not be
used in MATLAB code as identifiers or function names. If your MATLAB code
contains any reserved keywords, the code generation build does not complete
and an error message is displayed. To address this error, modify your code
to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in
addition, your MATLAB code must not contain the “C++ Reserved Keywords”
on page 6-67.

C Reserved Keywords.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Reserved Keywords.

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

6-67

6 Generating C/C++ Code from MATLAB® Code

explicit operator this wchar_t

export private throw

Reserved Keywords for Code Generation.

abs fortran localZCE rtNaN

asm HAVESTDIO localZCSV SeedFileBuffer

bool id_t matrix SeedFileBufferLen

boolean_T int_T MODEL single

byte_T int8_T MT TID01EQ

char_T int16_T NCSTATES time_T

cint8_T int32_T NULL true

cint16_T int64_T NUMST TRUE

cint32_T INTEGER_CODE pointer_T uint_T

creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T

creal64_T localB real_T uint32_T

cuint8_T localC real32_T uint64_T

cuint16_T localDWork real64_T UNUSED_PARAMETER

cuint32_T localP RT USE_RTMODEL

ERT localX RT_MALLOC VCAST_FLUSH_DATA

false localXdis rtInf vector

FALSE localXdot rtMinusInf

MATLAB Coder Code Replacement Library Keywords. The list of
code replacement library (CRL) reserved keywords for your development
environment varies depending on which CRLs currently are registered.
Beyond the default ANSI®, ISO®, and GNU® CRLs provided with MATLAB
Coder software, additional CRLs might be registered and available for use if
you have installed other products that provide CRLs (for example, a target
product), or if you have used Embedded Coder APIs to create and register
custom CRLs.

6-68

Paths and File Infrastructure Setup

To generate a list of reserved keywords for all CRLs currently registered in
your environment, use the following MATLAB function:

crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers()

This function returns an array of CRL keyword strings. Specifying the return
argument is optional.

Note To list the CRLs currently registered in your environment, use the
MATLAB command RTW.viewTfl.

To generate a list of reserved keywords for the CRL that you are using to
generate code, call the function passing the name of the CRL as displayed in
the Code replacement librarymenu on the Code Generation > Interface
pane of the Configuration Parameters dialog box. For example,

crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

Here is a partial example of the function output:

>> crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

crl_ids =

'exp10'

'exp10f'

'acosf'

'acoshf'

'asinf'

'asinhf'

'atanf'

'atanhf'

...

'rt_lu_cplx'

'rt_lu_cplx_sgl'

'rt_lu_real'

'rt_lu_real_sgl'

'rt_mod_boolean'

'rt_rem_boolean'

6-69

6 Generating C/C++ Code from MATLAB® Code

'strcpy'

'utAssert'

Note Some of the returned keyword strings appear with the suffix
$N, for example, 'rt_atan2$N'. $N expands into the suffix _snf only if
nonfinite numbers are supported. For example, 'rt_atan2$N' represents
'rt_atan2_snf' if nonfinite numbers are supported and 'rt_atan2' if
nonfinite numbers are not supported. As a precaution, you should treat both
forms of the keyword as reserved.

Conventions for Naming Generated files
The following table describes how MATLAB Coder names generated files.
MATLAB Coder follows MATLAB conventions by providing platform-specific
extensions for MEX files.

Platform MEX File
Extension

MATLAB
Coder Library
Extension

MATLAB Coder
Executable
Extension

Linus Torvalds’
Linux (32-bit)

.mexglx .a None

Linux x86-64 .mexa64 .a None

Microsoft
Windows (32-bit)

.mexw32 .lib .exe

Windows x64 .mexw64 .lib .exe

6-70

Code Generation for More Than One Entry-Point MATLAB® Function

Code Generation for More Than One Entry-Point MATLAB
Function

In this section...

“Advantages of Generating Code for More Than One Entry-Point Function”
on page 6-71

“Generating Code for More Than One Entry-Point Function Using the
Project Interface” on page 6-71

“Generating Code for More Than One Entry-Point Function at the
Command Line” on page 6-74

“How to Call an Entry-Point Function in a MEX Function” on page 6-76

“How to Call an Entry-Point Function in a C/C++ Library Function from
C/C++ Code” on page 6-76

Advantages of Generating Code for More Than One
Entry-Point Function
Generating a single C/C++ library for more than one entry-point function
allows you to:

• Create C/C++ libraries containing multiple, compiled MATLAB files to
integrate with larger C/C++ applications.

• Share code efficiently between library functions.

• Communicate between library functions using shared memory.

Generating a MEX function for more than one entry-point function allows
you to validate entry-point interactions in MATLAB before creating a C/C++
library.

Generating Code for More Than One Entry-Point
Function Using the Project Interface
In the project, in the Entry-Point Files pane on the Overview tab, click the
Add files link. Browse to the file that you want to add. Repeat this action
for each entry-point file.

6-71

6 Generating C/C++ Code from MATLAB® Code

By default, MATLAB Coder:

• Lists the entry-point files alphabetically.

• Generates a MEX function in the current folder. MATLAB Coder names
the MEX function , fun_1_mex. fun_1 is the name of the first entry-point
function.

• Stores generated files in the subfolder codegen/mex/fun_1/.

Generating a MEX Function with Two Entry-Point Functions Using
the Project Interface

Generate a MEX function with two entry-point functions, ep1 and ep2.
Function ep1 takes one input, a single scalar, and ep2 takes two inputs, a
double scalar and a double vector.

1 In a local writable folder, create a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

2 In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

3 In the same folder, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new ep.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link. Browse to the
file ep1.m. Click OK to add the file to the project.

The file is displayed on the Overview tab, and the input is undefined.

c Define the type of input u.

6-72

Code Generation for More Than One Entry-Point MATLAB® Function

i On the Overview tab, select the input parameter u. To the right of
this parameter, click the Actions icon () to open the context menu.

ii From the menu, select Define Type.

iii In the Define Type dialog box, set Class to single. Click OK to
specify that the input is a single scalar.

Note MATLAB Coder displays scalars with a size 1x1.

d On the project Overview tab, click the Add files link. Browse to the
file ep2.m. Click OK to add the file to the project.

The file is displayed on the Overview tab, and the inputs are undefined.

e Define the type of input u.

iv On the Overview tab, select the input parameter u. To the right of
this parameter, click the Actions icon () to open the context menu.

v From the menu, select Define Type.

vi In the Define Type dialog box, set Class to double. Click OK to
specify that the input is a double scalar.

f Repeat step e for input v, setting the Size to 2x1.

4 In the MATLAB Coder project, click the Build tab.

By default, the Output type is MEX function and the Output file name
is ep1_mex.

5 On this tab, click the Build button to generate a MEX function using the
default project settings.

MATLAB Coder builds the project and, by default, generates a MEX
function, ep1_mex, in the current folder. MATLAB Coder also generates
other supporting files in a subfolder called codegen/mex/ep1_mex.
MATLAB Coder uses the name of the MATLAB function as the root name
for the generated files and creates a platform-specific extension for the
MEX file, as described in “Naming Conventions” on page 6-66.

6-73

6 Generating C/C++ Code from MATLAB® Code

You can now test your MEX function in MATLAB. For more information,
see “How to Call an Entry-Point Function in a MEX Function” on page 6-76.

Generating a C Static Library with Two Entry-Point Functions Using
the Project Interface

You can generate a C static library with two entry-point functions, ep1 and
ep2, following the same project setup steps that you use to generate a MEX
function. (See Generating a MEX Function with Two Entry-Point Functions
Using the Project Interface on page 6-72.) When you build the project, set the
Output type to C/C++ Static Library.

MATLAB Coder builds the project and generates a C library, ep1, and
supporting files in the default folder, codegen/lib/ep1.

You can now test your library. For more information, see “How to Call an
Entry-Point Function in a C/C++ Library Function from C/C++ Code” on
page 6-76.

Generating Code for More Than One Entry-Point
Function at the Command Line
To generate code for more than one entry-point function, use the following
syntax, where global_options applies to all functions, fun_1 through fun_n,
and options_n applies only to the preceding function fun_n.

codegen -global_options fun_1 -options_1 ... fun_n -options_n

By default, codegen:

• Generates a MEX function in the current folder. codegen names the MEX
function , fun_1_mex. fun_1 is the name of the first entry-point function.

• Stores generated files in the subfolder codegen/mex/fun_1/.

If you specify an output file name, out_fun, using the -o option, codegen
stores the generated files in the subfolder codegen/mex/out_fun/. For more
information on setting build options at the command line, see codegen.

6-74

Code Generation for More Than One Entry-Point MATLAB® Function

Example: Generating a MEX Function with Two Entry-Point Functions
at the Command Line

Generate a MEX function with two entry-point functions, ep1 and ep2.
Function ep1 takes one input, a single scalar, and ep2 takes two inputs, a
double scalar and a double vector. Using the -o option, name the generated
MEX function sharedmex.

codegen -o sharedmex ep1 -args single(0) ep2 -args { 0, zeros(1,1024) }

codegen generates a MEX function named sharedmex in the current folder
and stores generated files in the subfolder codegen/mex/sharedmex.

Note By default, codegen generates a MEX function named ep1_mex in the
subfolder, codegen/mex/ep1.

Generating a C/C++ Static Library with Two Entry-Point Functions at
the Command Line

Generate standalone C/C++ code and compile it to a library for two entry-point
functions, ep1 and ep2. Function ep1 takes one input, a single scalar, and ep2
takes two inputs, a double scalar and a double vector. Use the -config:lib
option to specify that the target is a library. Using the -o option, name the
generated library function sharedlib.

codegen -config:lib -o sharedlib ep1 -args single(0) ep2 ...
-args { 0, zeros(1,1024) }

codegen generates C/C++ library code in the codegen\lib\sharedlib folder.

Note By default, codegen generates a library function named ep1 in the
subfolder, codegen/lib/ep1.

For information on viewing entry-point functions in the code generation
report, see “Code Generation Reports” on page 6-169.

6-75

6 Generating C/C++ Code from MATLAB® Code

How to Call an Entry-Point Function in a MEX Function
To call an entry-point function in a MEX function that has more than one
entry point, use this syntax:

MEX_Function('entry_point_function_name',
... entry_point_function_param1,
... , entry_point_function_paramn)

Example: Calling an Entry-Point Function in a MEX Function

Consider a MEX function, sharedmex, that has entry-point functions ep1 and
ep2. Entry-point function ep1 takes one single scalar input and ep2 takes two
inputs, a double scalar and a double vector.

To call ep1 with an input parameter u, enter:

sharedmex('ep1', u)

To call ep2 with input parameters u and v, enter:

sharedmex('ep2', u, v)

How to Call an Entry-Point Function in a C/C++
Library Function from C/C++ Code
To call an entry-point function in a C/C++ library function from C/C++ code,
write a main function in C/C++ that:

• Includes the generated header files, which contain the function prototypes
for the entry-point functions.

• Calls the initialize function before calling the entry-point functions for
the first time.

• Calls the terminate function after calling the entry-point functions for
the last time.

• Configures your target to integrate this custom C/C++ main function with
your generated code, as described in “Custom C/C++ Code Integration”
on page 7-12.

• Generates the C/C++ executable using codegen.

6-76

Code Generation for More Than One Entry-Point MATLAB® Function

See the example, “Calling a C Static Library Function from C Code” on page
7-2.

6-77

6 Generating C/C++ Code from MATLAB® Code

Code Generation for Global Data

In this section...

“Code Generation Workflow” on page 6-78

“Declaring Global Variables” on page 6-78

“Defining Global Data” on page 6-79

“Synchronizing Global Data with MATLAB” on page 6-80

“Limitations of Using Global Data” on page 6-84

Code Generation Workflow
To generate C/C++ code from MATLAB code that uses global data:

1 Declare the variables as global in your code.

2 Before using the global data, define and initialize it.

For more information, see “Defining Global Data” on page 6-79.

3 Generate code from the MATLAB Coder project interface or using codegen.

If you use global data, you must also specify whether you want to synchronize
this data between MATLAB and the generated MEX function. For more
information, see “Synchronizing Global Data with MATLAB” on page 6-80.

Declaring Global Variables
When using global data, you must first declare the global variables in your
MATLAB code. Consider the use_globals function that uses two global
variables AR and B:

function y = use_globals(u)
%#codegen
% Turn off inlining to make
% generated code easier to read
coder.inline('never');
% Declare AR and B as global variables
global AR;

6-78

Code Generation for Global Data

global B;
AR(1) = u + B(1);
y = AR * 2;

Defining Global Data
You can define global data either in the MATLAB global workspace, in a
MATLAB Coder project, or at the command line. If you do not initialize
global data in a project or at the command line, MATLAB Coder looks for the
variable in the MATLAB global workspace. If the variable does not exist,
MATLAB Coder generates an error.

Defining Global Data in the MATLAB Global Workspace
To generate a MEX function for the use_globals function described in
“Declaring Global Variables” on page 6-78 using codegen:

1 In the MATLAB workspace, define and initialize the global data. At the
MATLAB prompt, enter:

global AR B;
AR = ones(4);
B=[1 2 3];

2 Generate a MEX file.

codegen use_globals -args {0}
% Use the -args option to specify that the input u
% is a real, scalar, double
% By default, codegen generates a MEX function,
% use_globals_mex, in the current folder

Defining Global Data in a MATLAB Coder Project

1 On the project Overview tab, click Add global.

2 In the Rename Global dialog box New Name field, enter the name of the
global variable and then click OK.

By default, MATLAB Coder names the first global variable in a project g,
and subsequent global variables g1, g2, etc.

6-79

6 Generating C/C++ Code from MATLAB® Code

3 After adding a global variable, before building the project, specify its type
and, optionally, initial value. For more information, see “Specifying Global
Variable Type and Initial Value in a Project” on page 3-32.

Note If you do not specify the type, you must create a variable with the
same name in the global workspace.

Defining Global Data at the Command Line
To define global data at the command line, use the codegen -globals option.
For example, to compile the use_globals function described in “Declaring
Global Variables” on page 6-78, specify two global inputs AR and B at the
command line. Use the -args option to specify that the input u is a real, scalar
double. By default, codegen generates a MEX function, use_globals_mex,
in the current folder.

codegen -globals {'AR',ones(4),'B',[1 2 3]} use_globals -args {0}

Alternatively, specify the type and initial value with the -globals flag using
the format -globals {'g', {type, initial_value}}.

Defining Variable-Size Global Data. To provide initial values for
variable-size global data, specify the type and initial value with the -globals
flag using the format -globals {'g', {type, initial_value}}. For
example, to specify a global variable g1 that has an initial value [1 1] and
upper bound [2 2], enter:

codegen foo -globals {'g1', {coder.typeof(0, [2 2],1),[1 1]}}

For a detailed explanation of the syntax, see coder.typeof.

Synchronizing Global Data with MATLAB

Why Synchronize Global Data?
The generated MEX function and MATLAB each have their own copies of
global data. To make these copies consistent, you must synchronize their
global data whenever the two interact. If you do not synchronize the data,

6-80

Code Generation for Global Data

their global variables might differ. The level of interaction determines when
to synchronize global data. For more information, see “When to Synchronize
Global Data” on page 6-81.

When to Synchronize Global Data
By default, synchronization between the MEX function’s global data and
MATLAB occurs at MEX function entry and exit and for all extrinsic calls.
Use this synchronization method for maximum consistency between the MEX
function and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.

• Disable synchronization when the global data does not interact.

• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options
to use. To learn how to set these options, see “How to Synchronize Global
Data” on page 6-82.

6-81

6 Generating C/C++ Code from MATLAB® Code

Global Data Synchronization Options

If you want to... Set the
global data
synchronization
mode to:

Synchronize before
and after extrinsic
calls?

Have maximum consistency
when all extrinsic calls
modify global data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Have maximum consistency
when most extrinsic calls
modify global data, but a
few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the
coder.extrinsic
-sync:off option to
turn off synchronization
for the extrinsic calls that
do not affect global data.

Have maximum consistency
when most extrinsic calls
do not modify global data,
but a few do.

At MEX-function
entry and exit

Yes. Use the
coder.extrinsic
-sync:on option to
synchronize only the calls
that modify global data.

Maximize performance
when synchronizing global
data, and none of your
extrinsic calls modify global
data.

At MEX-function
entry and exit

No.

Communicate between
generated MEX functions
only. No interaction
between MATLAB and
MEX function global data.

Disabled No.

How to Synchronize Global Data
To control global data synchronization, set the global data synchronization
mode and select whether to synchronize extrinsic functions. For guidelines on
which options to use, see “When to Synchronize Global Data” on page 6-81.

6-82

Code Generation for Global Data

You can control the global data synchronization mode from the project
settings dialog box, the command line, or a MEX configuration dialog box.
You control the synchronization of data with extrinsic functions using the
coder.extrinsic -sync:on and -sync:off options.

Controlling the Global Data Synchronization Mode in the Project
Settings Dialog Box.

1 On the MATLAB Coder project Build tab, verify that Output type is set
to MEX Function and then click the More settings link.

2 On the Project Settings dialog box Memory tab, set Global data
synchronization mode to At MEX-function entry and exit or
Disabled, as applicable.

Controlling the Global Data Synchronization Mode from the
Command Line.

1 In the MATLAB workspace, define the code generation configuration object.
At the MATLAB command line, enter:

mexcfg = coder.config('mex');

2 At the MATLAB command line, set the GlobalDataSyncMethod property to
SyncAtEntryAndExits or NoSync, as applicable. For example:

mexcfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';

3 When compiling your code, use the mexcfg configuration object. For
example, to generate a MEX function for function foo that has no inputs:

codegen -config mexcfg foo

Controlling Synchronization for Extrinsic Function Calls. To control
whether synchronization between MATLAB and MEX function global
data occurs before and after you call an extrinsic function, use the
coder.extrinsic-sync:on and -sync:off options.

By default, global data is:

6-83

6 Generating C/C++ Code from MATLAB® Code

• Synchronized before and after each extrinsic call, if the global data
synchronization mode is At MEX-function entry, exit and extrinsic
calls. If you are sure that certain extrinsic calls do not affect global data,
turn off synchronization for these calls using the -sync:off option. For
example, if functions foo1 and foo2 do not affect global data, turn off
synchronization for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');

• Not synchronized, if the global data synchronization mode is At
MEX-function entry and exit. If the code has a few extrinsic calls
that affect global data, turn on synchronization for these calls using the
-sync:on option. For example, if functions foo1 and foo2 do affect global
data, turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');

• Not synchronized, if the global data synchronization mode is Disabled.
When synchronization is disabled, you cannot control the synchronization
for specific extrinsic calls. The -sync:on option has no effect.

Limitations of Using Global Data
You cannot use global data with the coder.cstructname function.

6-84

Generation of Traceable Code

Generation of Traceable Code

In this section...

“About Code Traceability” on page 6-85

“Generating Traceable Code” on page 6-86

“Format of Traceability Tags” on page 6-88

“Location of Comments in Generated Code” on page 6-88

“Traceability Limitations” on page 6-93

About Code Traceability
You can configure MATLAB Coder to generate C code and MEX functions that
include the MATLAB source code as comments. Including this information in
the generated code enables you to:

• Correlate the generated code with your source code.

• Understand how the generated code implements your algorithm.

• Evaluate the quality of the generated code.

In these automatically generated comments, a traceability tag immediately
precedes each line of source code. This traceability tag provides details
about the location of the source code. For more information, see “Format
of Traceability Tags” on page 6-88.

For Embedded Coder projects, (requires an Embedded Coder license), you can
also generate C/C++ code that includes the MATLAB function help text. The
function help text is the first comment after the MATLAB function signature.
It is displayed in the function banner of the generated code. The function help
text provides information about the capabilities of the function and how to
use it. For more information, see “Tracing Between Generated C Code and
MATLAB Code”.

6-85

6 Generating C/C++ Code from MATLAB® Code

Generating Traceable Code
To generate more traceable code, include MATLAB source code as comments
in the generated code from the Project Settings dialog box, the command
line, or a MEX configuration dialog box.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click the More settings link to view the project settings
for the selected output type.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you switch the output type between
MEX Function and C/C++ Static Library, C/C++ Dynamic Library
or C/C++ Executable, verify these settings. For more information, see
“Changing Output Type” on page 3-40.

3 In the Project Settings dialog box, click the Comments tab.

4 On the Code Appearance tab, select MATLAB source code as
comments and then close the dialog box.

At the Command Line

For MEX Targets. Use the MATLABSourceComments option of the MEX
configuration object. For example, to compile the file foo.m and include the
source code as comments in the generated MEX function:

1 In the MATLAB workspace, define the MEX configuration object by issuing
a constructor command:

mexcfg = coder.config('mex');

2 From the command line, enable the MATLABSourceComments:

mexcfg.MATLABSourceComments = true;

6-86

Generation of Traceable Code

3 Using the -config option, pass the configuration object to codegen. For
example, to generate a MEX function for a function foo that has no input
parameters:

codegen -config mexcfg foo

For C/C++ Libraries. Use the MATLABSourceComments option of the code
generation configuration object. For example, to compile the file foo.m and
include the source code as comments in the generated code for a C static
library:

1 Create a code generation configuration object and enable the
MATLABSourceComments option. For example, to create a configuration
object for a static library:

cfg = coder.config('lib');
% If an Embedded Coder license is available,
% cfg is a coder.EmbeddedCodeConfig object,
% otherwise it's a coder.CodeConfig object
cfg.MATLABSourceComments = true;

2 Using the -config option, pass the configuration object to codegen.
For example, to generate a library for a function foo that has no input
parameters:

codegen -config cfg foo

For Embedded Coder projects (requires an Embedded Coder license), you can
also include the function help text in the generated code function banner
using the MATLABFcnDesc option. For more information, see “Tracing
Between Generated C Code and MATLAB Code” in the Embedded Coder
documentation.

For C/C++ Executables. Use the MATLABSourceComments option of the code
generation configuration object. For example, to compile the file foo.m and
include the source code as comments in the generated code for a C executable:

1 Create a code generation configuration object and enable the
MATLABSourceComments option. For example, to create a configuration
object for a library:

6-87

6 Generating C/C++ Code from MATLAB® Code

cfg = coder.config('exe');
% If an Embedded Coder license is available,
% cfg is a coder.EmbeddedCodeConfig object,
% otherwise it's a coder.CodeConfig object
cfg.MATLABSourceComments = true;

2 Using the -config option, pass the configuration object to codegen. For
example, to generate an executable for a function foo that has no input
parameters:

codegen -config cfg main.c foo
% You must specify a main file when generating an executable

For Embedded Coder projects, (requires an Embedded Coder license), you can
also include the function help text in the function banner of the generated
code using the MATLABFcnDesc option. For more information, see “Tracing
Between Generated C Code and MATLAB Code” in the Embedded Coder
documentation.

Format of Traceability Tags
In the generated code, traceability tags appear immediately before the
MATLAB source code in the comment. The format of the tag is:
<filename>:<line number>.

For example, the comment indicates that the code x = r * cos(theta);
appears at line 4 in the source file straightline.m.

/* 'straightline:4' x = r * cos(theta); */

Note With an Embedded Coder license, the traceability tags in the code
generation report are hyperlinks to the MATLAB source code. For more
information, see “Tracing Between Generated C Code and MATLAB Code” in
the Embedded Coder documentation.

Location of Comments in Generated Code
The auto-generated comments containing the source code and traceability tag
appear in the generated code as follows.

6-88

Generation of Traceable Code

Straight-Line Source Code
In straight-line source code without any if, while, for or switch statements,
the comment containing the source code precedes the generated code that
implements the source code statement. This comment appears after any user
comment that precedes the generated code.

For example, in the following code, the user comment, /* Convert polar
to Cartesian */, appears before the automatically generated comment
containing the first line of source code, together with its traceability tag,
/* 'straightline:4' x = r * cos(theta); */.

MATLAB Code.

function [x y] = straightline(r,theta)
%#codegen
% Convert polar to Cartesian
x = r * cos(theta);
y = r * sin(theta);

Commented C Code.

void straightline(real_T r, real_T theta, ...
real_T *x, real_T *y)

{
/* Convert polar to Cartesian */
/* 'straightline:4' x = r * cos(theta); */
*x = r * muDoubleScalarCos(theta);
/* 'straightline:5' y = r * sin(theta); */
*y = r * muDoubleScalarSin(theta);

}

If Statements
The comment for the if statement immediately precedes the code that
implements the statement. This comment appears after any user comment
that precedes the generated code. The comments for the elseif and else
clauses appear immediately after the code that implements the clause, and
before the code generated for statements in the clause.

6-89

6 Generating C/C++ Code from MATLAB® Code

MATLAB Code.

function y = ifstmt(u,v)
%#codegen
if u > v

y = v + 10;
elseif u == v

y = u * 2;
else

y = v - 10;
end

Commented C Code.

real_T ifstmt(real_T u, real_T v)
{

/* 'ifstmt:3' if u > v */
if(u > v) {

/* 'ifstmt:4' y = v + 10; */
return v + 10.0;

} else if(u == v) {
/* 'ifstmt:5' elseif u == v */
/* 'ifstmt:6' y = u * 2; */
return u * 2.0;

} else {
/* 'ifstmt:7' else */
/* 'ifstmt:8' y = v - 10; */
return v - 10.0;

}
}

For Statements
The comment for the for statement header immediately precedes the
generated code that implements the header. This comment appears after any
user comment that precedes the generated code.

MATLAB Code.

function y = forstmt(u)

6-90

Generation of Traceable Code

%#codegen
y = 0;
for i=1:u

y = y + 1;
end

Commented C Code.

real_T forstmt(real_T u)
{

real_T y;
real_T i;
/* 'forstmt:3' y = 0; */
y = 0.0;
/* 'forstmt:4' for i=1:u */
for(i = 1.0; i <= u; i++) {

/* 'forstmt:5' y = y + 1; */
y++;

}
return y;

}

While Statements
The comment for the while statement header immediately precedes the
generated code that implements the statement header. This comment appears
after any user comment that precedes the generated code.

MATLAB Code.

function y = subfcn(y)
coder.inline('never');
while y < 100

y = y + 1;
end

Commented C Code.

static void m_refp1_subfcn(real_T *y)
{

6-91

6 Generating C/C++ Code from MATLAB® Code

/* 'whilestmt:6' coder.inline('never'); */
/* 'whilestmt:7' while y < 100 */
while(*y < 100.0) {

/* 'whilestmt:8' y = y + 1; */
(*y)++;

}
}

Switch Statements
The comment for the switch statement header immediately precedes the
generated code that implements the statement header. This comment appears
after any user comment that precedes the generated code. The comments for
the case and otherwise clauses appear immediately after the generated code
that implements the clause, and before the code generated for statements
in the clause.

MATLAB Code.

function y = switchstmt(u)
%#codegen
y = 0;
switch u

case 1
y = y + 1;

case 3
y = y + 2;

otherwise
y = y - 1;

end

Commented C Code.

real_T switchstmt(real_T u)
{

/* 'switchstmt:3' y = 0; */
/* 'switchstmt:4' switch u */
switch((int32_T)u) {
case 1:

6-92

Generation of Traceable Code

/* 'switchstmt:5' case 1 */
/* 'switchstmt:6' y = y + 1; */
return 1.0;
break;

case 3:
/* 'switchstmt:7' case 3 */
/* 'switchstmt:8' y = y + 2; */
return 2.0;
break;

default:
/* 'switchstmt:9' otherwise */
/* 'switchstmt:10' y = y - 1; */
return -1.0;
break;

}
}

Traceability Limitations
For MATLAB Coder, there are traceability limitations:

• You cannot include MATLAB source code as comments for:

- MathWorks toolbox functions

- P-code

• The appearance or location of comments can vary depending on the
following conditions:

- Even if the implementation code is eliminated, for example, due to
constant folding, comments might still appear in the generated code.

- If a complete function or code block is eliminated, comments might be
eliminated from the generated code.

- For certain optimizations, the comments might be separated from the
generated code.

- Even if you do not choose to include source code comments in the
generated code, the generated code always includes legally required
comments from the MATLAB source code.

6-93

6 Generating C/C++ Code from MATLAB® Code

Code Generation for Enumerated Types
When generating MEX functions from MATLAB code, use enumerated
types based on int32 with MATLAB Coder . When generating C code with
MATLAB Coder, you can also use this enumerated type, but int32 does
not provide methods for customizing the behavior of enumerated data. For
information about defining enumerated types based on int32, see “Workflows
for Using Enumerated Data for Code Generation” in the Code Generation
from MATLAB documentation.

6-94

Code Generation for Variable-Size Data

Code Generation for Variable-Size Data

In this section...

“Enabling and Disabling Support for Variable-Size Data” on page 6-95

“Controlling Dynamic Memory Allocation” on page 6-96

“Generating Code for MATLAB Functions with Variable-Size Data” on
page 6-98

“Generating Code for a MATLAB Function That Expands a Vector in a
Loop” on page 6-101

“Using Dynamic Memory Allocation for an "Atoms" Simulation” on page
6-107

Variable-size data is data whose size might change at run time. You can
use MATLAB Coder to generate C/C++ code from MATLAB code that uses
variable-size data. MATLAB supports bounded and unbounded variable-size
data for code generation. Bounded variable-size data has fixed upper bounds.
This data can be allocated statically on the stack or dynamically on the heap.
Unbounded variable-size data does not have fixed upper bounds. This data
must be allocated on the heap. For more information, see “Code Generation
for Variable-Size Data”. By default, for MEX and C/C++ code generation,
support for variable-size data is enabled and dynamic memory allocation is
enabled for variable-size arrays whose size exceeds a configurable threshold.

Enabling and Disabling Support for Variable-Size
Data
By default, for MEX and C/C++ code generation, support for variable-size
data is enabled. You modify variable sizing settings from the project settings
dialog box, the command line, or using dialog boxes.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click the More settings link to view the project settings
for the selected output type.

6-95

6 Generating C/C++ Code from MATLAB® Code

3 In the Project Settings dialog box, click the General tab.

4 On the Memory tab, select or clear Enable variable-sizing. Close the
dialog box.

At the Command Line

1 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to codegen :

codegen -config cfg foo

Controlling Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays
whose size exceeds a configurable threshold. If you disable support for
variable-size data (see “Enabling and Disabling Support for Variable-Size
Data” on page 6-95), you also disable dynamic memory allocation. You can
modify dynamic memory allocation settings from the project settings dialog
box or the command line.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click the More settings link to view the project settings
for the selected output type.

3 In the Project Settings dialog box, click the Memory tab.

4 On the Memory tab, set Dynamic memory allocation to one of the
following options:

6-96

Code Generation for Variable-Size Data

Setting Action

Never Dynamic memory allocation is
disabled. All variable-size data is
allocated statically on the stack.

For all variable-sized arrays Dynamic memory allocation is
enabled for all variable-size arrays.
All variable-size data is allocated
dynamically on the heap.

For arrays with maximum size
above threshold

Dynamic memory allocation is
enabled for all variable-size arrays
whose size exceeds the Dynamic
memory allocation threshold.
Variable-size arrays whose size
is less than this threshold are
allocated on the stack.

5 Optionally, if you set Dynamic memory allocation to For arrays
with maximum size above threshold, configure Dynamic memory
allocation threshold to fine tune memory allocation.

6 Close the dialog box.

At the Command Line

1 Create a configuration object for code generation. For example, for a MEX
function:

mexcfg = coder.config('mex');

2 Set the DynamicMemoryAllocation option:

6-97

6 Generating C/C++ Code from MATLAB® Code

Setting Action

mexcfg.DynamicMemoryAllocation='Off';
Dynamic memory allocation
is disabled. All variable-size
data is allocated statically
on the stack.

mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays';
Dynamic memory
allocation is enabled for
all variable-size arrays.
All variable-size data is
allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold';
Dynamic memory
allocation is enabled for all
variable-size arrays whose
size (in bytes) is greater than
or equal to the value specified
using the Dynamic memory
allocation threshold
parameter. Variable-size
arrays whose size is less than
this threshold are allocated
on the stack.

3 Optionally, if you set Dynamic memory allocation to `Threshold',
configure Dynamic memory allocation threshold to fine tune memory
allocation.

4 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg foo

Generating Code for MATLAB Functions with
Variable-Size Data
Here is a basic workflow that first generates MEX code for verifying the
generated code and then generates standalone code after you are satisfied
with the result of the prototype.

6-98

Code Generation for Variable-Size Data

To work through these steps with a simple example, see “Generating Code for
a MATLAB Function That Expands a Vector in a Loop” on page 6-101

1 In the MATLAB Editor, add the compilation directive %#codegen at the
top of your function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm

• Turns on checking in the MATLAB Code Analyzer to detect potential
errors during code generation

2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code
assigns data a fixed size but later grows the data, such as by assignment
or concatenation in a loop. If that data is supposed to vary in size at run
time, you can ignore these warnings.

3 Generate a MEX function using codegen to verify the generated code. Use
the following command-line options:

• -args {coder.typeof...} if you have variable-size inputs

• -report to generate a code generation report

For example:

codegen -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for
function foo. The first argument, 0, indicates the input data type (double)
and complexity (real). The second argument, [2 4], indicates the size, a
matrix with two dimensions. The third argument, 1, indicates that the
input is variable sized. The upper bound is 2 for the first dimension and 4
for the second dimension.

6-99

6 Generating C/C++ Code from MATLAB® Code

Note During compilation, codegen detects variables and structure fields
that change size after you define them, and reports these occurrences as
errors. In addition, codegen performs a run-time check to generate errors
when data exceeds upper bounds.

4 Fix size mismatch errors:

Cause: How To Fix: For More
Information:

You try to change the
size of data after its
size has been locked.

Declare the data to be
variable sized.

See “Diagnosing
and Fixing Size
Mismatch Errors” in
the Code Generation
from MATLAB
documentation.

5 Fix upper bounds errors

Cause: How To Fix: For More
Information:

MATLAB cannot
determine or
compute the upper
bound

Specify an upper
bound.

In the Code Generation
from MATLAB
documentation,
see “Specifying
Upper Bounds for
Variable-Size Data” and
“Diagnosing and Fixing
Size Mismatch Errors”.

MATLAB attempts
to compute an upper
bound for unbounded
variable-size data.

If the data is
unbounded, enable
dynamic memory
allocation.

See “Controlling
Dynamic Memory
Allocation” on page
6-96.

6 Generate C/C++ code using the codegen function.

6-100

Code Generation for Variable-Size Data

Generating Code for a MATLAB Function That
Expands a Vector in a Loop

• “About the MATLAB Function uniquetol” on page 6-101

• “Step 1: Add Compilation Directive for Code Generation” on page 6-101

• “Step 2: Address Issues Detected by the Code Analyzer” on page 6-102

• “Step 3: Generate MEX Code” on page 6-102

• “Step 4: Fix the Size Mismatch Error” on page 6-104

• “Step 5: Generate C Code” on page 6-105

• “Step 6: Change the Dynamic Memory Allocation Threshold” on page 6-106

About the MATLAB Function uniquetol
This example uses the function uniquetol. This function returns in vector B a
version of input vector A, where the elements are unique to within tolerance
tol of each other. In vector B, abs(B(i) - B(j)) > tol for all i and j. Initially,
assume input vector A can store up to 100 elements.

function B = uniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Step 1: Add Compilation Directive for Code Generation
Add the %#codegen compilation directive at the top of the function:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;

6-101

6 Generating C/C++ Code from MATLAB® Code

for i = 2:length(A)
if abs(A(k) - A(i)) > tol

B = [B A(i)];
k = i;

end
end

Step 2: Address Issues Detected by the Code Analyzer
The Code Analyzer detects that variable B might change size in the for-loop.
It issues this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, vector B should expand in size as it adds values from vector A.
Therefore, you can ignore this warning.

Step 3: Generate MEX Code
To generate MEX code, use the codegen function.

1 Generate a MEX function for uniquetol:

codegen -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

What do these command-line options mean?

The -args option specifies the class, complexity, and size of each input to
function uniquetol:

• The first argument, coder.typeof, defines a variable-size input. The
expression coder.typeof(0,[1 100],1) defines input A as a real double
vector with a fixed upper bound. Its first dimension is fixed at 1 and its
second dimension can vary in size up to 100 elements.

For more information, see “Specifying Variable-Size Inputs at the
Command Line” on page 6-42 in the MATLAB Coder documentation.

• The second argument, coder.typeof(0), defines input tol as a real
double scalar.

6-102

Code Generation for Variable-Size Data

The -report option instructs codegen to generate a code generation report,
even if no errors or warnings occur.

For more information, see the codegen reference page.

Executing this command generates a compiler error:

??? Size mismatch (size [1 x 1] ~= size [1 x 2]).
The size to the left is the size
of the left-hand side of the assignment.

2 Open the error report and select the Variables tab.

The error indicates a size mismatch between the left-hand side and right-hand
side of the assignment statement B = [B A(i)];. The assignment B =

6-103

6 Generating C/C++ Code from MATLAB® Code

A(1) establishes the size of B as a fixed-size scalar (1 x 1). Therefore, the
concatenation of [B A(i)] creates a 1 x 2 vector.

Step 4: Fix the Size Mismatch Error
To fix this error, declare B to be a variable-size vector.

1 Add this statement to the uniquetol function:

coder.varsize('B');

It should appear before B is used (read). For example:

function B = uniquetol(A, tol) %#codegen
A = sort(A);

coder.varsize('B');

B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

The function coder.varsize declares every instance of B in uniquetol
to be variable sized.

2 Generate code again using the same command:

codegen -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the current folder, codegen generates a MEX function for uniquetol
and provides a link to the code generation report.

3 Click the View report link.

4 In the code generation report, select the Variables tab.

6-104

Code Generation for Variable-Size Data

The size of variable B is 1x:?, indicating that it is variable size with no
upper bounds.

Step 5: Generate C Code
Generate C code for variable-size inputs. By default, codegen allocates
memory statically for any data whose size is less than the dynamic memory
allocation threshold of 64 kilobytes. If the size of the data exceeds the
threshold or is unbounded, codegen allocates memory dynamically on the
heap.

1 Create a configuration option for C library generation:

cfg=coder.config('lib');

2 Issue this command:

codegen -config cfg -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

codegen generates a static library in the default location,
codegen\lib\uniquetol and provides a link to the code generation report.

6-105

6 Generating C/C++ Code from MATLAB® Code

3 Click the View report link.

4 In the code generation report, click the C code tab.

5 On the C code tab, click the link to uniquetol.h.

The function declaration is:

extern void uniquetol(const real_T A_data[100], const int32_T A_size[2],...
real_T tol, emxArray_real_T *B);

codegen computes the size of A and, because its maximum size is less
than the default dynamic memory allocation threshold of 64k bytes,
allocates this memory statically. The generated code contains two pieces of
information about A:

• real_T A_data[100]: the maximum size of input A (where 100 is the
maximum size specified using coder.typeof).

• int32_T_A_sizes[2]: the actual size of the input.

Because B is variable size with unknown upper bounds, in the generated
code, codegen represents B as emxArray_real_T. MATLAB provides utility
functions for creating and interacting with emxArrays in your generated
code. For more information, see “C Code Interface for Arrays”.

Step 6: Change the Dynamic Memory Allocation Threshold
In this step, you reduce the dynamic memory allocation threshold and
generate code for an input that exceeds this threshold.

1 Set the dynamic memory allocation threshold to 4 kilobytes and generate
code where the size of input A exceeds this threshold.

cfg.DynamicMemoryAllocationThreshold=4096;
codegen -config cfg -report uniquetol -args {coder.typeof(0,[1 10000],1),coder.typeof(0)}

2 View the generated code in the report. Because the maximum size of input
A now exceeds the dynamic memory allocation threshold, codegen allocates
A dynamically on the heap and represents A as emxArray_real_T.

6-106

Code Generation for Variable-Size Data

extern void uniquetol(const emxArray_real_T *A, ...
real_T tol, emxArray_real_T *B);

Using Dynamic Memory Allocation for an "Atoms"
Simulation
This example shows how to generate code for a MATLAB algorithm that
runs a simulation of bouncing "atoms" and returns the result after a number
of iterations. There are no upper bounds on the number of atoms that the
algorithm accepts, so this example takes advantage of dynamic memory
allocation.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd).
The new folder will contain only the files that are relevant for this example. If
you do not want to affect the current folder (or if you cannot generate files in
this folder), change your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_atoms');

About the ’run_atoms’ Function

The run_atoms.m function runs a simulation of bouncing atoms (also applying
gravity and energy loss).

help run_atoms

atoms = run_atoms(atoms,n)
atoms = run_atoms(atoms,n,iter)
Where 'atoms' the initial and final state of atoms (can be empty)

'n' is the number of atoms to simulate.
'iter' is the number of iterations for the simulation

(if omitted it is defaulted to 3000 iterations.)

Set Up Code Generation Options

Create a code generation configuration object

6-107

6 Generating C/C++ Code from MATLAB® Code

cfg = coder.config;
% Enable dynamic memory allocation for variable size matrices.
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Set Up Example Inputs

Create a template structure ’Atom’ to provide the compiler with the necessary
information about input parameter types. An atom is a structure with four
fields (x,y,vx,vy) specifying position and velocity in Cartesian coordinates.

atom = struct('x', 0, 'y', 0, 'vx', 0, 'vy', 0);

Generate a MEX Function for Testing

Use the command ’codegen’ with the following arguments:

’-args {coder.typeof(atom, [1 Inf]),0,0}’ indicates that the first argument is a
row vector of atoms where the number of columns is potentially infinite. The
second and third arguments are scalar double values.

’-config cfg’ enables dynamic memory allocation, defined by workspace
variable cfg

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),0,0} -config cfg -o ru

Run the MEX Function

The MEX function simulates 10000 atoms in approximately 1000 iteration
steps given an empty list of atoms. The return value is the state of all the
atoms after simulation is complete.

atoms = run_atoms_mex([],10000,1000)

atoms =

1x10000 struct array with fields:
x
y
vx

6-108

Code Generation for Variable-Size Data

vy

Run the MEX Function Again

Continue the simulation with another 500 iteration steps

atoms = run_atoms_mex(atoms,10000,500)

atoms =

1x10000 struct array with fields:
x
y
vx
vy

Generate a Standalone C Code Library

To generate a C library, create a standard configuration object for libraries:

cfg = coder.config('lib');

Enable dynamic memory allocation

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

In MATLAB the default data type is double. However, integers are usually
used in C code, so pass int32 integer example values to represent the number
of atoms and iterations.

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -co

Inspect Generated Code

When creating a library the code is generated in the folder
codegen/lib/run_atoms/ The code in this folder is self contained. To interface
with the compiled C code you need only the generated header files and the
library file.

6-109

6 Generating C/C++ Code from MATLAB® Code

dir codegen/lib/run_atoms

. rtw_proj.tmw run_atoms_emxutil.obj

.. rtwtypes.h run_atoms_initialize.c
buildInfo.mat run_atoms.c run_atoms_initialize.h
rtGetInf.c run_atoms.h run_atoms_initialize.ob
rtGetInf.h run_atoms.lib run_atoms_ref.rsp
rtGetInf.obj run_atoms.lnk run_atoms_rtw.bat
rtGetNaN.c run_atoms.obj run_atoms_rtw.mk
rtGetNaN.h run_atoms_emxAPI.c run_atoms_terminate.c
rtGetNaN.obj run_atoms_emxAPI.h run_atoms_terminate.h
rt_nonfinite.c run_atoms_emxAPI.obj run_atoms_terminate.obj
rt_nonfinite.h run_atoms_emxutil.c run_atoms_types.h
rt_nonfinite.obj run_atoms_emxutil.h

Write a C Main Function

Typically, the main function is platform-dependent code that performs
rendering or some other processing. In this example, a pure ANSI-C function
produces a file ’run_atoms_state.m’ which (when run) contains the final state
of the atom simulation.

type run_atoms_main.c

/* Include standard C libraries */
#include <stdio.h>

/* The interface to the main function we compiled. */
#include "codegen/lib/run_atoms/run_atoms.h"

/* The interface to EMX data structures. */
#include "codegen/lib/run_atoms/run_atoms_emxAPI.h"

void main(int argc, char **argv)
{

int i;
emxArray_Atom *atoms;

6-110

Code Generation for Variable-Size Data

/* Main arguments unused */
(void) argc;
(void) argv;

/* Initially create an empty row vector of atoms (1 row, 0 columns) */
atoms = emxCreate_Atom(1, 0);

/* Call the function to simulate 10000 atoms in 1000 iteration steps */
run_atoms(atoms, 10000, 1000);

/* Call the function again to do another 500 iteration steps */
run_atoms(atoms, 10000, 500);

/* Print the result to standard output */
for (i = 0; i < atoms->size[1]; i++) {

printf("%f %f %f %f\n",
atoms->data[i].x, atoms->data[i].y, atoms->data[i].vx, atoms->d

}

/* Free memory */
emxDestroyArray_Atom(atoms);

}

Create a Configuration Object for Executables

cfg = coder.config('exe');
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Generate a Standalone Executable

You must pass the function (run_atoms.m) as well as custom C code
(run_atoms_main.c) The ’codegen’ command automatically generates C code
from the MATLAB code, then calls the C compiler to bundle this generated
code with the custom C code (run_atoms_main.c).

codegen run_atoms run_atoms_main.c -args {coder.typeof(atom, [1 Inf]),int32

Run the Executable

6-111

6 Generating C/C++ Code from MATLAB® Code

After simulation is complete, this produces the file ’atoms_state.mat’. The
MAT file is a 10000x4 matrix, where each row is the position and velocity of
an atom (x, y, vx, vy) representing the current state of the whole system.

[~,atoms_data] = system(['.' filesep 'run_atoms']);
fh = fopen('atoms_state.mat', 'w');
fprintf(fh, '%s', atoms_data);
fclose(fh);

Fetch the State

Running the executable produced ’atoms_state.mat’. Now, recreate the
structure array from the saved matrix

load atoms_state.mat -ascii
clear atoms
for i = 1:size(atoms_state,1)

atoms(1,i).x = atoms_state(i,1);
atoms(1,i).y = atoms_state(i,2);
atoms(1,i).vx = atoms_state(i,3);
atoms(1,i).vy = atoms_state(i,4);

end

Render the State

Call ’run_atoms_mex’ with zero iterations to render only

run_atoms_mex(atoms, 10000, 0);

6-112

Code Generation for Variable-Size Data

Clean Up

Remove files and return to original folder

Run Command: Cleanup

if ispc
delete run_atoms.exe

else
delete run_atoms

end
delete atoms_state.mat
cleanup

6-113

6 Generating C/C++ Code from MATLAB® Code

Code Generation for MATLAB Classes
You can generate code for MATLAB value and handle classes and user-defined
System objects that inherit from a handle class. For more information, see
“Code Generation for MATLAB Classes”.

6-114

How MATLAB® Coder™ Partitions Generated Code

How MATLAB Coder Partitions Generated Code

In this section...

“Partitioning Generated Files” on page 6-115

“How to Select the File Partitioning Method” on page 6-115

“Partitioning Generated Files with One C/C++ File Per MATLAB File” on
page 6-116

“Generated Files and Locations” on page 6-122

“File Partitioning and Inlining” on page 6-124

Partitioning Generated Files
By default, during code generation, MATLAB Coder partitions the code to
match your MATLAB file structure. This one-to-one mapping lets you easily
correlate your files generated in C/C++ with the compiled MATLAB code.
MATLAB Coder cannot produce the same one-to-one correspondence for
MATLAB functions that are inlined in generated code (see “File Partitioning
and Inlining” on page 6-124).

Alternatively, you can select to generate all C/C++ functions into a single
file. For more information, see “How to Select the File Partitioning Method”
on page 6-115. This option facilitates integrating your code with existing
embedded software.

How to Select the File Partitioning Method

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click the More settings link to view the project settings
for the selected output type.

3 In the Project Settings dialog box, click the Code Appearance tab.

6-115

6 Generating C/C++ Code from MATLAB® Code

4 On the Code Appearance tab, set the Generated file partitioning
method to Generate one file for each MATLAB file or Generate all
functions into a single file. Close the dialog box.

At the Command Line
Use the codegen configuration object FilePartitionMethod option. For
example, to compile the function foo that has no inputs and generate one
C/C++ file for each MATLAB function:

1 Create a MEX configuration object and set the FilePartitionMethod
option:

mexcfg = coder.config('mex');
mexcfg.FilePartitionMethod = 'MapMFileToCFile';

2 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg -O disable:inline foo
% Disable inlining to generate one C/C++ file for each MATLAB function

Partitioning Generated Files with One C/C++ File Per
MATLAB File
By default, for MATLAB functions that are not inlined, MATLAB Coder
generates one C/C++ file for each MATLAB file. In this case, MATLAB Coder
partitions generated C/C++ code so that it corresponds to your MATLAB files.

How MATLAB Coder Partitions Entry-Point MATLAB Functions
For each entry-point (top-level) MATLAB function, MATLAB Coder generates
one C/C++ source, header, and object file with the same name as the MATLAB
file.

For example, suppose you define a simple function foo that calls the function
identity. The source file foo.m contains the following code:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

6-116

How MATLAB® Coder™ Partitions Generated Code

Here is the code for identity.m :

function y = identity(u) %#codegen
y = u;

In the MATLAB Coder project interface, to generate a C static library for
foo.m:

1 First, define the inputs u and v. For more information, see “Specifying
Properties of Primary Function Inputs in a Project” on page 3-7.

2 In the MATLAB Coder project, click the Build tab.

3 On the Build tab:

a Set the Output type to C/C++ Static Library.

b Click the More settings link to view the project settings for the selected
output type.

c In the Project Settings dialog box, click the All Settings tab.

d On this tab, under Function Inlining, set the Inline threshold
parameter to 0.

4 Click Build to generate a library.

To generate a C static library for foo.m at the command line, enter:

codegen -config:lib -O disable:inline foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

MATLAB Coder generates source, header, and object files for foo and
identity in your output folder.

6-117

6 Generating C/C++ Code from MATLAB® Code

How MATLAB Coder Partitions Subfunctions
For each subfunction, MATLAB Coder generates code in the same C/C++
file as the calling function. For example, suppose you define a function foo
that calls a subfunction identity:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

function y = identity(u)
y = u;

To generate a C++ library, before generating code, select a C++ compiler and
set C++ as your target language. For example, at the command line:

6-118

How MATLAB® Coder™ Partitions Generated Code

1 Select C++ as your target language:

cfg = coder.config('lib')
cfg.TargetLang='C++'

2 Generate the C++ library:

codegen -config cfg foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

In the primary function foo, MATLAB Coder inlines the code for the
identity subfunction.

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files so that you can use a C++ compiler and interface with external C++
applications. It does not generate C++ classes.

Here is an excerpt of the generated code in foo.cpp:

6-119

6 Generating C/C++ Code from MATLAB® Code

...
/* Function Definitions */
real_T foo(real_T u, real_T v)
{

return (real_T)(real32_T)u + v;
}
...

How MATLAB Coder Partitions Overloaded Functions
An overloaded function is a function that has multiple implementations to
accommodate different classes of input. For each implementation (that is
not inlined), MATLAB Coder generates a separate C/C++ file with a unique
numeric suffix.

For example, suppose you define a simple function multiply_defined:

%#codegen
function y = multiply_defined(u)

y = u+1;

You then add two more implementations of multiply_defined, one to handle
inputs of type single (in an @single subfolder) and another for inputs of
type double (in an @double subfolder).

To call each implementation, define the function call_multiply_defined:

%#codegen
function [y1,y2,y3] = call_multiply_defined

y1 = multiply_defined(int32(2));
y2 = multiply_defined(2);
y3 = multiply_defined(single(2));

Next, generate C code for the overloaded function multiply_defined. For
example, at the MATLAB command line, enter:

codegen -O disable:inline -config:lib call_multiply_defined

6-120

How MATLAB® Coder™ Partitions Generated Code

MATLAB Coder generates C source, header, and object files for each
implementation of multiply_defined, as highlighted. Use numeric suffixes
to create unique file names.

For more information, see “Overloaded MATLAB Functions” in the MATLAB
Programming Fundamentals documentation.

6-121

6 Generating C/C++ Code from MATLAB® Code

Generated Files and Locations
The types and locations of generated files depend on the target that you
specify. For all targets, if errors or warnings occur during build or if you
explicitly request a report, MATLAB Coder generates reports.

Each time MATLAB Coder generates the same type of output for the same
code or project, it removes the files from the previous build. If you want to
preserve files from a build, copy them to a different location before starting
another build.

Generated Files for MEX Targets
By default, MATLAB Coder generates the following files for MEX function
(mex) targets.

Type of Files Location

Platform-specific MEX files Current folder

MEX, and C/C++ source,
header, and object files

codegen/mex/function_name

HTML reports codegen/mex/function_name/html

Generated Files for C/C++ Static Library Targets
By default, MATLAB Coder generates the following files for C/C++ static
library targets.

Type of Files Location

C/C++ source, library, header,
and object files

codegen/lib/function_name

HTML reports codegen/lib/function_name/html

Generated Files for C/C++ Dynamic Library Targets
By default, MATLAB Coder generates the following files for C/C++ dynamic
library targets.

6-122

How MATLAB® Coder™ Partitions Generated Code

Type of Files Location

C/C++ source, library, header,
and object files

codegen/dll/function_name

HTML reports codegen/dll/function_name/html

Generated Files for C/C++ Executable Targets
By default, MATLAB Coder generates the following files for C/C++ executable
targets.

Type of Files Location

C/C++ source, header, and
object files

codegen/exe/function_name

HTML reports codegen/exe/function_name/html

Changing Names and Locations of Generated Files

In the Project Settings Dialog Box.

To change the... Do this...

Output file name On the Build tab, enter the name in the Output file
name field.

Output file location On the Build tab:

1 Click the More settings link.

2 In the Project Settings dialog box, click the Paths
tab.

3 On this tab, set Build folder to Specified
folder.

The Build folder name field appears.

6-123

6 Generating C/C++ Code from MATLAB® Code

To change the... Do this...

4 For this field, either browse to the output file
location or enter the full path. The path must not
contain spaces.

Note The output file location should not contain:

• Spaces, as this can lead to code generation failures
in certain operating system configurations.

• Non 7-bit ASCII characters, such as Japanese
characters.

At the Command Line. You can change the name and location of generated
files by using the codegen options -o and -d.

File Partitioning and Inlining
How MATLAB Coder partitions generated C/C++ code depends on whether
you choose to generate one C/C++ file for each MATLAB file and whether
you inline your MATLAB functions.

If you... MATLAB Coder...

Generate all C/C++
functions into a single
file and disable inlining

Generates a single C/C++ file without inlining
any functions.

Generate all C/C++
functions into a single
file and enable inlining

Generates a single C/C++ file. Inlines functions
whose sizes fall within the inlining threshold.

6-124

How MATLAB® Coder™ Partitions Generated Code

If you... MATLAB Coder...

Generate one C/C++
file for each MATLAB
file and disable inlining

Partitions generated C/C++ code to match
MATLAB file structure. See “Partitioning
Generated Files with One C/C++ File Per
MATLAB File” on page 6-116.

Generate one C/C++
file for each MATLAB
file and enable inlining

Places inlined functions in the same C/C++ file
as the function into which they are inlined. Even
when you enable inlining, MATLAB Coder does
not inline all functions, only those whose sizes
fall within the inlining threshold. For MATLAB
functions that are not inlined, MATLAB Coder
partitions the generated C/C++ code, as described.

6-125

6 Generating C/C++ Code from MATLAB® Code

Tradeoffs Between File Partitioning and Inlining
Weighing file partitioning against inlining represents a trade-off between
readability, efficiency, and ease of integrating your MATLAB code with
existing embedded software.

If You
Generate...

Generated
C/C++ Code

Advantages Disadvantages

All C/C++
functions into
a single file

Does not match
MATLAB file
structure

Easier to
integrate
with existing
embedded
software

Difficult to
map C/C++
code to original
MATLAB file

One C/C++-file
for each
MATLAB file
and enable
inlining

Does not exactly
match MATLAB
file structure

Program
executes faster

Difficult to
map C/C++
code to original
MATLAB file

One C/C++-file
for each
MATLAB file
and disable
inlining

Matches
MATLAB file
structure

Easy to map
C/C++ code
to original
MATLAB file

Program runs
less efficiently

How Disabling Inlining Affects File Partitioning
Inlining is enabled by default. Therefore, to generate one C/C++ file for each
top-level MATLAB function, you must:

• Select to generate one C/C++ file for each top-level MATLAB function. For
more information, see “How to Select the File Partitioning Method” on
page 6-115.

• Explicitly disable inlining, either globally or for individual MATLAB
functions.

How to Disable Inlining Globally in the Project Settings Dialog Box.

1 In the MATLAB Coder project, click the Build tab.

6-126

How MATLAB® Coder™ Partitions Generated Code

2 On this tab, click the More settings link to view the project settings for
the selected output type.

3 In the Project Settings dialog box, click the All Settings tab.

4 On this tab, under Function Inlining set the Inlining threshold to
zero. Close the dialog box.

How to Disable Inlining Globally at the Command Line. To disable
inlining of functions, use the -O disable:inline option with codegen. For
example, to disable inlining and generate a MEX function for a function foo
that has no inputs:

codegen -O disable:inline foo

For more information, see the description of codegen.

How to Disable Inlining for Individual Functions. To disable inlining for
an individual MATLAB function, add the directive coder.inline('never');
on a separate line in the source MATLAB file, after the function signature.

function y = foo(u,v) %#codegen
coder.inline('never');
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

The directive applies only to the function in which it appears. In this example,
inlining is disabled for function foo, but not for identity, a top-level function
defined in a separate MATLAB file and called by foo. To disable inlining for
identity, add this directive after its function signature in the source file
identity.m. For more information, see coder.inline.

For a more efficient way to disable inlining for both functions, see “How to
Disable Inlining Globally at the Command Line” on page 6-127.

Correlating C/C++ Code with Inlined Functions
To correlate the C/C++ code that you generate with the original inlined
functions, add comments in the MATLAB code to identify the function. These

6-127

6 Generating C/C++ Code from MATLAB® Code

comments will appear in the C/C++ code and help you map the generated code
back to the original MATLAB functions.

Modifying the Inlining Threshold
To change inlining behavior, adjust the inlining threshold parameter.

Modifying the Inlining Threshold in the Project Settings Dialog Box.
On the Project Settings dialog box All Settings tab, under Function
Inlining, set the value of the Inline threshold parameter.

Modifying the Inlining Threshold at the Command Line. Set the
value of the InlineThreshold parameter of the configuration object. See
coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig.

6-128

Customizing the Post-Code-Generation Build Process

Customizing the Post-Code-Generation Build Process

In this section...

“Workflow for Customizing Post-Code-Generation Builds” on page 6-129

“Build Information Object” on page 6-129

“Build Information Functions” on page 6-130

“Programming a Post-Code-Generation Command” on page 6-165

“Using a Post-Code-Generation Command in Your Build” on page 6-166

“Example: Programming and Using a Post-Code-Generation Command at
the Command Line” on page 6-168

Workflow for Customizing Post-Code-Generation
Builds
For certain applications, you might want to control aspects of the build
process that occur after code generation but before compilation. For example,
you might want to specify compiler or linker options. You can customize build
processing that occurs after code generation using MATLAB Coder for MEX
functions, C/C++ libraries and C/C++ executables.

To customize a post-code-generation build:

1 Program a post-code-generation command. Typically, you use this
command to get the project name and build information or to add data to
the build information object.

2 Use this command in your build.

Build Information Object
At the start of a build, the MATLAB Coder build process logs the following
project, build option, and dependency information to a temporary build
information object, RTW.BuildInfo:

• Compiler options

• Preprocessor identifier definitions

6-129

6 Generating C/C++ Code from MATLAB® Code

• Linker options

• Source files and paths

• Include files and paths

• Precompiled external libraries

Use the “Build Information Functions” on page 6-130 to access this information
in the build information object. “Programming a Post-Code-Generation
Command” on page 6-165 explains how to use the functions to control a
post-code-generation build.

Build Information Functions

• “addCompileFlags” on page 6-131

• “addDefines” on page 6-132

• “addIncludeFiles” on page 6-134

• “addIncludePaths” on page 6-136

• “addLinkFlags” on page 6-138

• “addLinkObjects” on page 6-139

• “addNonBuildFiles” on page 6-143

• “addSourceFiles” on page 6-145

• “addSourcePaths” on page 6-147

• “addTMFTokens” on page 6-150

• “findIncludeFiles” on page 6-152

• “getCompileFlags” on page 6-153

• “getDefines” on page 6-153

• “getFullFileList” on page 6-155

• “getIncludeFiles” on page 6-156

• “getIncludePaths” on page 6-157

• “getLinkFlags” on page 6-158

6-130

Customizing the Post-Code-Generation Build Process

• “getNonBuildFiles” on page 6-159

• “getSourceFiles” on page 6-161

• “getSourcePaths” on page 6-163

• “updateFilePathsAndExtensions” on page 6-164

• “updateFileSeparator” on page 6-165

Use these functions to access or write data to the build information object.
Typically, the syntax is:

buildInfo.function_name(input_param1, ..., input_paramn)

addCompileFlags

Purpose. Add compiler options to project’s build information

Syntax.
addCompileFlags(buildinfo, options, groups)

groups is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

options
A character array or cell array of character arrays that specifies the
compiler options to be added to the build information. The function adds
each option to the end of a compiler option vector. If you specify multiple
options within a single character array, for example '-Zi -Wall', the
function adds the string to the vector as a single element. For example,
if you add '-Zi -Wall' and then '-O3', the vector consists of two
elements, as shown below.

'-Zi -Wall' '-O3'

6-131

6 Generating C/C++ Code from MATLAB® Code

groups (optional)
A character array or cell array of character arrays that groups specified
compiler options. You can use groups to

• Document the use of specific compiler options

• Retrieve or apply collections of compiler options

You can apply

• A single group name to one or more compiler options

• Multiple group names to collections of compiler options (available for
nonmakefile build environments only)

To... Specify groups as a...

Apply one group name
to all compiler options

Character array.

Apply different group
names to compiler
options

Cell array of character arrays such that
the number of group names matches the
number of elements you specify for options.

Description. The addCompileFlags function adds specified compiler options
to the project’s build information. MATLAB Coder stores the compiler options
in a vector. The function adds options to the end of the vector based on the
order in which you specify them.

In addition to the required buildinfo and options arguments, you can use
an optional groups argument to group your options.

addDefines

Purpose. Add preprocessor macro definitions to project’s build information

Syntax.
addDefines(buildinfo, macrodefs, groups)

groups is optional.

6-132

Customizing the Post-Code-Generation Build Process

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

macrodefs
A character array or cell array of character arrays that specifies the
preprocessor macro definitions to be added to the object. The function
adds each definition to the end of a compiler option vector. If you specify
multiple definitions within a single character array, for example '-DRT
-DDEBUG', the function adds the string to the vector as a single element.
For example, if you add '-DPROTO -DDEBUG' and then '-DPRODUCTION',
the vector consists of two elements, as shown below.

'-DPROTO -DDEBUG' '-DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups specified
definitions. You can use groups to

• Document the use of specific macro definitions

• Retrieve or apply groups of macro definitions

You can apply

• A single group name to one or more macro definitions

• Multiple group names to collections of macro definitions (available for
nonmakefile build environments only)

To... Specify groups as a...

Apply one group name
to all macro definitions

Character array.

Apply different group
names to macro
definitions

Cell array of character arrays such that
the number of group names matches the
number elements you specify for macrodefs.

6-133

6 Generating C/C++ Code from MATLAB® Code

Description. The addDefines function adds specified preprocessor macro
definitions to the project’s build information. The MATLAB Coder software
stores the definitions in a vector. The function adds definitions to the end of
the vector based on the order in which you specify them.

In addition to the required buildinfo and macrodefs arguments, you can use
an optional groups argument to group your options.

addIncludeFiles

Purpose. Add include files to project’s build information

object

Syntax.
addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies names
of include files to be added to the build information.

The filename strings can include wildcard characters, provided that the
dot delimiter (.) is present. Examples are '*.*', '*.h', and '*.h*'.

The function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include file vector

• Have a path that matches the path of a matching filename

6-134

Customizing the Post-Code-Generation Build Process

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies paths
to the include files. The function adds the paths to the end of a vector
in the order that you specify them. If you specify a single path as a
character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified
include files. You can use groups to

• Document the use of specific include files

• Retrieve or apply groups of include files

You can apply

• A single group name to an include file

• A single group name to multiple include files

• Multiple group names to collections of multiple include files

To... Specify groups as a...

Apply one group name to
all include files

Character array.

Apply different group
names to include files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

Description. The addIncludeFiles function adds specified include files
to the project’s build information. The MATLAB Coder software stores the
include files in a vector. The function adds the filenames to the end of the
vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can
specify optional paths and groups arguments. You can specify each optional
argument as a character array or a cell array of character arrays.

6-135

6 Generating C/C++ Code from MATLAB® Code

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all include files it adds to the
build information

Cell array of character arrays Pairs each character array with a specified include file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addIncludePaths

Purpose. Add include paths to project’s build information

Syntax.
addIncludePaths(buildinfo, paths, groups)

groups is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies include
file paths to be added to the build information. The function adds the
paths to the end of a vector in the order that you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

6-136

Customizing the Post-Code-Generation Build Process

groups (optional)
A character array or cell array of character arrays that groups specified
include paths. You can use groups to

• Document the use of specific include paths

• Retrieve or apply groups of include paths

You can apply

• A single group name to an include path

• A single group name to multiple include paths

• Multiple group names to collections of multiple include paths

To... Specify groups as a...

Apply one group name
to all include paths

Character array.

Apply different group
names to include paths

Cell array of character arrays such that the
number of group names that you specify
matches the number of elements you specify
for paths.

Description. The addIncludePaths function adds specified include paths
to the project’s build information. The MATLAB Coder software stores the
include paths in a vector. The function adds the paths to the end of the vector
in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can specify
an optional groups argument. You can specify groups as a character array
or a cell array of character arrays.

6-137

6 Generating C/C++ Code from MATLAB® Code

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all include
paths it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified include path. Thus, the length
of the cell array must match the length of
the cell array you specify for paths.

addLinkFlags

Purpose. Add link options to project’s build information

Syntax.
addLinkFlags(buildinfo, options, groups)

groups is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

options
A character array or cell array of character arrays that specifies the
linker options to be added to the build information. The function adds
each option to the end of a linker option vector. If you specify multiple
options within a single character array, for example '-MD -Gy', the
function adds the string to the vector as a single element. For example,
if you add '-MD -Gy' and then '-T', the vector consists of two elements,
as shown below.

'-MD -Gy' '-T'

groups (optional)
A character array or cell array of character arrays that groups specified
linker options. You can use groups to

• Document the use of specific linker options

6-138

Customizing the Post-Code-Generation Build Process

• Retrieve or apply groups of linker options

You can apply

• A single group name to one or more linker options

• Multiple group names to collections of linker options (available for
nonmakefile build environments only)

To... Specify groups as a...

Apply one group name
to all linker options

Character array.

Apply different group
names to linker options

Cell array of character arrays such that the
number of group names matches the number
of elements you specify for options.

Description. The addLinkFlags function adds specified linker options to the
project’s build information. The MATLAB Coder software stores the linker
options in a vector. The function adds options to the end of the vector based
on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can use
an optional groups argument to group your options.

addLinkObjects

Purpose. Add link objects to project’s build information

Syntax.
addLinkObjects(buildinfo, linkobjs, paths, priority,
precompiled, linkonly, groups)

All arguments except buildinfo , linkobjs, and paths are optional. If you
specify an optional argument, you must specify all of the optional arguments
preceding it.

6-139

6 Generating C/C++ Code from MATLAB® Code

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

linkobjs
A character array or cell array of character arrays that specifies the
filenames of linkable objects to be added to the build information. The
function adds the filenames that you specify in the function call to a
vector that stores the object filenames in priority order. If you specify
multiple objects that have the same priority (see priority below), the
function adds them to the vector based on the order in which you specify
the object filenames in the cell array.

The function removes duplicate link objects that

• You specify as input

• Already exist in the linkable object filename vector

• Have a path that matches the path of a matching linkable object
filename

A duplicate entry consists of an exact match of a path string and
corresponding linkable object filename.

paths
A character array or cell array of character arrays that specifies paths
to the linkable objects. If you specify a character array, the path string
applies to all linkable objects.

priority (optional)
A numeric value or vector of numeric values that indicates the relative
priority of each specified link object. Lower values have higher priority.
The default priority is 1000.

precompiled (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is precompiled.

Specify true if the link object has been prebuilt for faster compiling and
linking and exists in a specified location.

6-140

Customizing the Post-Code-Generation Build Process

If precompiled is false (the default), the MATLAB Coder build process
creates the link object in the build folder.

This argument is ignored if linkonly equals true.

linkonly (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is to be used only for linking.

Specify true if the MATLAB Coder build process should not build, nor
generate rules in the makefile for building, the specified link object, but
should include it when linking the final executable. For example, you
can use this to incorporate link objects for which source files are not
available. If linkonly is true, the value of precompiled is ignored.

If linkonly is false (the default), rules for building the link objects
are added to the makefile. In this case, the value of precompiled
determines which subsection of the added rules is expanded,
START_PRECOMP_LIBRARIES (true) or START_EXPAND_LIBRARIES
(false).

groups (optional)
A character array or cell array of character arrays that groups specified
link objects. You can use groups to

• Document the use of specific link objects

• Retrieve or apply groups of link objects

You can apply

• A single group name to a linkable object

• A single group name to multiple linkable objects

• Multiple group name to collections of multiple linkable objects

6-141

6 Generating C/C++ Code from MATLAB® Code

To... Specify groups as a...

Apply one group name
to all link objects

Character array.

Apply different group
names to link objects

Cell array of character arrays such that
the number of group names matches the
number elements you specify for linkobjs.

The default value of groups is {''}.

Description. The addLinkObjects function adds specified link objects to the
project’s build information. The MATLAB Coder software stores the link
objects in a vector in relative priority order. If multiple objects have the same
priority or you do not specify priorities, the function adds the objects to the
vector based on the order in which you specify them.

In addition to the required buildinfo, linkobjs, and paths arguments,
you can specify the optional arguments priority, precompiled, linkonly,
and groups. You can specify paths and groups as a character array or a
cell array of character arrays.

If You Specify paths or
groups as a...

The Function...

Character array Applies the character array to all objects
it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified object. Thus, the length of the
cell array must match the length of the
cell array you specify for linkobjs.

Similarly, you can specify priority, precompiled, and linkonly as a value
or vector of values.

6-142

Customizing the Post-Code-Generation Build Process

If You Specify priority,
precompiled, or linkonly as
a...

The Function...

Value Applies the value to all objects it adds to
the build information.

Vector of values Pairs each value with a specified object.
Thus, the length of the vector must match
the length of the cell array you specify for
linkobjs.

If you choose to specify an optional argument, you must specify all of the
optional arguments preceding it. For example, to specify that all objects are
precompiled using the precompiled argument, you must specify the priority
argument that precedes precompiled. You could pass the default priority
value 1000, as shown below.

addLinkObjects(myBuildInfo, 'test1', '/proj/lib/lib1', 1000, true);

addNonBuildFiles

Purpose. Add nonbuild-related files to project’s build information

Syntax.
addNonBuildFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies names
of nonbuild-related files to be added to the build information.

The filename strings can include wildcard characters, provided that the
dot delimiter (.) is present. Examples are '*.*', '*.DLL', and '*.D*'.

6-143

6 Generating C/C++ Code from MATLAB® Code

The function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate nonbuild file entries that

• Already exist in the nonbuild file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies paths
to the nonbuild files. The function adds the paths to the end of a vector
in the order that you specify them. If you specify a single path as a
character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified
nonbuild files. You can use groups to

• Document the use of specific nonbuild files

• Retrieve or apply groups of nonbuild files

You can apply

• A single group name to a nonbuild file

• A single group name to multiple nonbuild files

• Multiple group names to collections of multiple nonbuild files

To... Specify groups as a...

Apply one group name to
all nonbuild files

Character array.

Apply different group
names to nonbuild files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

6-144

Customizing the Post-Code-Generation Build Process

Description. The addNonBuildFiles function adds specified nonbuild-related
files, such as DLL files required for a final executable, or a README file,
to the project’s build information. The MATLAB Coder software stores the
nonbuild files in a vector. The function adds the filenames to the end of the
vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can
specify optional paths and groups arguments. You can specify each optional
argument as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all nonbuild files it adds to
the build information.

Cell array of character arrays Pairs each character array with a specified nonbuild file.
Thus, the length of the cell array must match the length of
the cell array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addSourceFiles

Purpose. Add source files to project’s build information

Syntax.
addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies names
of the source files to be added to the build information.

6-145

6 Generating C/C++ Code from MATLAB® Code

The filename strings can include wildcard characters, provided that the
dot delimiter (.) is present. Examples are '*.*', '*.c', and '*.c*'.

The function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies paths
to the source files. The function adds the paths to the end of a vector
in the order that you specify them. If you specify a single path as a
character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified
source files. You can use groups to

• Document the use of specific source files

• Retrieve or apply groups of source files

You can apply

• A single group name to a source file

• A single group name to multiple source files

• Multiple group names to collections of multiple source files

6-146

Customizing the Post-Code-Generation Build Process

To... Specify group as a...

Apply one group name to
all source files

Character array.

Apply different group
names to source files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

Description. The addSourceFiles function adds specified source files to the
project’s build information. The MATLAB Coder software stores the source
files in a vector. The function adds the filenames to the end of the vector
in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can
specify optional paths and groups arguments. You can specify each optional
argument as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all source files it adds to the
build information.

Cell array of character arrays Pairs each character array with a specified source file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addSourcePaths

Purpose. Add source paths to project’s build information

Syntax.
addSourcePaths(buildinfo, paths, groups)

groups is optional.

6-147

6 Generating C/C++ Code from MATLAB® Code

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies source
file paths to be added to the build information. The function adds the
paths to the end of a vector in the order that you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

Note The MATLAB Coder software does not check whether a specified
path string is valid.

groups (optional)
A character array or cell array of character arrays that groups specified
source paths. You can use groups to

• Document the use of specific source paths

• Retrieve or apply groups of source paths

6-148

Customizing the Post-Code-Generation Build Process

You can apply

• A single group name to a source path

• A single group name to multiple source paths

• Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name to
all source paths

Character array.

Apply different group
names to source paths

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for paths.

Description. The addSourcePaths function adds specified source paths to
the project’s build information. The MATLAB Coder software stores the
source paths in a vector. The function adds the paths to the end of the vector
in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can specify
an optional groups argument . You can specify groups as a character array
or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all source
paths it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified source path. Thus, the length
of the character array or cell array must
match the length of the cell array you
specify for paths.

Note The MATLAB Coder software does not check whether a specified path
string is valid.

6-149

6 Generating C/C++ Code from MATLAB® Code

addTMFTokens

Purpose. Add template makefile (TMF) tokens that provide build-time
information for makefile generation

Syntax.
addTMFTokens(buildinfo, tokennames, tokenvalues, groups)

groups is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

tokennames
A character array or cell array of character arrays that specifies names
of TMF tokens (for example, '|>CUSTOM_OUTNAME<|') to be added to the
build information. The function adds the token names to the end of a
vector in the order that you specify them.

If you specify a token name that already exists in the vector, the first
instance takes precedence and its value used for replacement.

tokenvalues
A character array or cell array of character arrays that specifies TMF
token values corresponding to the previously-specified TMF token
names. The function adds the token values to the end of a vector in
the order that you specify them.

groups (optional)
A character array or cell array of character arrays that groups specified
TMF tokens. You can use groups to

• Document the use of specific TMF tokens

• Retrieve or apply groups of TMF tokens

You can apply

• A single group name to a TMF token

• A single group name to multiple TMF tokens

6-150

Customizing the Post-Code-Generation Build Process

• Multiple group names to collections of multiple TMF tokens

To... Specify groups as a...

Apply one group name to
all TMF tokens

Character array.

Apply different group
names to TMF tokens

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for tokennames.

Description. Call the addTMFTokens function inside a post code generation
command to provide build-time information to help customize makefile
generation. The tokens specified in the addTMFTokens function call must
be handled appropriately in the template makefile (TMF) for the target
selected for your project. For example, if your post code generation command
calls addTMFTokens to add a TMF token named |>CUSTOM_OUTNAME<| that
specifies an output file name for the build, the TMF must act on the value of
|>CUSTOM_OUTNAME<| to achieve the desired result.

The addTMFTokens function adds specified TMF token names and values
to the project’s build information. The MATLAB Coder software stores the
TMF tokens in a vector. The function adds the tokens to the end of the vector
in the order that you specify them.

In addition to the required buildinfo, tokennames, and tokenvalues
arguments, you can specify an optional groups argument. You can specify
groups as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all TMF tokens it adds to the
build information.

Cell array of character arrays Pairs each character array with a specified TMF token.
Thus, the length of the cell array must match the length of
the cell array you specify for tokennames.

6-151

6 Generating C/C++ Code from MATLAB® Code

findIncludeFiles

Purpose. Find and add include (header) files to build information object

Syntax.
findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

extPatterns (optional)
A cell array of character arrays that specify patterns of file name
extensions for which the function is to search. Each pattern

• Must start with *.

• Can include any combination of alphanumeric and underscore (_)
characters

The default pattern is *.h.

Examples of valid patterns include

*.h
*.hpp
.x

Description. The findIncludeFiles function

• Searches for include files, based on specified file name extension patterns,
in all source and include paths recorded in a project’s build information
object

• Adds the files found, along with their full paths, to the build information
object

• Deletes duplicate entries

6-152

Customizing the Post-Code-Generation Build Process

getCompileFlags

Purpose. Compiler options from project’s build information

Syntax.
options = getCompileFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of compiler flags you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of compiler flags you do not want the function to return.

Output Arguments. Compiler options stored in the project’s build
information.

Description. The getCompileFlags function returns compiler options
stored in the project’s build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getDefines

Purpose. Preprocessor macro definitions from project’s build information

6-153

6 Generating C/C++ Code from MATLAB® Code

Syntax.
[macrodefs, identifiers, values] = getDefines(buildinfo,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of macro definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of macro definitions you do not want the function to return.

Output Arguments. Preprocessor macro definitions stored in the project’s
build information. The function returns the macro definitions in three vectors.

Vector Description

macrodefs Complete macro definitions with -D prefix

identifiers Names of the macros

values Values assigned to the macros (anything
specified to the right of the first equals sign)
; the default is an empty string ('')

Description. The getDefines function returns preprocessor macro
definitions stored in the project’s build information. When the function
returns a definition, it automatically

• Prepends a -D to the definition if the -D was not specified when the
definition was added to the build information

• Changes a lowercase -d to -D

6-154

Customizing the Post-Code-Generation Build Process

Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of definitions the function is to return.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getFullFileList

Purpose. All files from project’s build information

Syntax.
[fPathNames, names] = getFullFileList(buildinfo, fcase)

fcase is optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

fcase (optional)
The string 'source', 'include', or 'nonbuild'. If the argument is
omitted, the function returns all files from the build information object.

If You Specify... The Function...

'source' Returns source files from the build
information object.

'include' Returns include files from the build
information object.

'nonbuild' Returns nonbuild files from the build
information object.

Output Arguments. Fully-qualified file paths and file names for files stored
in the project’s build information.

6-155

6 Generating C/C++ Code from MATLAB® Code

Note Usually it is unnecessary to resolve the path of every file in the project
build information, because the makefile for the project build will resolve file
locations based on source paths and rules. Therefore, getFullFileList
returns the path for each file only if a path was explicitly associated with the
file when it was added, or if you called updateFilePathsAndExtensions to
resolve file paths and extensions before calling getFullFileList.

Description. The getFullFileList function returns the fully-qualified
paths and names of all files, or files of a selected type (source, include, or
nonbuild), stored in the project’s build information.

getIncludeFiles

Purpose. Get include files from project’s build information

Syntax.
files = getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with
its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

6-156

Customizing the Post-Code-Generation Build Process

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of include files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of include files you do not want the function to return.

Returns. Names of include files stored in the project’s build information.

Description. The getIncludeFiles function returns the names of include
files stored in the project’s build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of include files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getIncludePaths

Purpose. Get include paths from project’s build information

Syntax.
files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

6-157

6 Generating C/C++ Code from MATLAB® Code

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of include paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of include paths you do not want the function to return.

Output Arguments. Paths of include files stored in the build information
object.

Description. The getIncludePaths function returns the names of include file
paths stored in the project’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
include file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getLinkFlags

Purpose. Link options from project’s build information

6-158

Customizing the Post-Code-Generation Build Process

Syntax.
options=getLinkFlags(buildinfo, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A character array or cell array that specifies groups of linker flags you
want the function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker flags you
do not want the function to return. To exclude groups and not include
specific groups, specify an empty cell array ('') for includeGroups.

Output Arguments. Linker options stored in the project’s build information.

Description. The getLinkFlags function returns linker options stored
in the project’s build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getNonBuildFiles

Purpose. Nonbuild-related files from project’s build information

Syntax.
files=getNonBuildFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

6-159

6 Generating C/C++ Code from MATLAB® Code

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with
its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of nonbuild files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of nonbuild files you do not want the function to return.

Output Arguments. Names of nonbuild files stored in the project’s build
information.

6-160

Customizing the Post-Code-Generation Build Process

Description. The getNonBuildFiles function returns the names of
nonbuild-related files, such as DLL files required for a final executable,
or a README file, stored in the project’s build information. Use the
concatenatePaths and replaceMatlabroot arguments to control whether
the function includes paths and your MATLAB root definition in the output it
returns. Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of nonbuild files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getSourceFiles

Purpose. Source files from project’s build information

Syntax.
srcfiles=getSourceFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with
its corresponding path.

false Returns only filenames.

6-161

6 Generating C/C++ Code from MATLAB® Code

Note Usually it is unnecessary to resolve the path of every file in the
project build information, because the makefile for the project build
will resolve file locations based on source paths and rules. Therefore,
specifying true for concatenatePaths returns the path for each file only
if a path was explicitly associated with the file when it was added, or if
you called updateFilePathsAndExtensions to resolve file paths and
extensions before calling getSourceFiles.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of source files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of source files you do not want the function to return.

Output Arguments. Names of source files stored in the project’s build
information.

Description. The getSourceFiles function returns the names of source
files stored in the project’s build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

6-162

Customizing the Post-Code-Generation Build Process

getSourcePaths

Purpose. Source paths from project’s build information

Syntax.
files=getSourcePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of source paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of source paths you do not want the function to return.

Output Arguments. Paths of source files stored in the project’s build
information.

6-163

6 Generating C/C++ Code from MATLAB® Code

Description. The getSourcePaths function returns the names of source file
paths stored in the project’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
source file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

updateFilePathsAndExtensions

Purpose. Update files in project’s build information with missing paths
and file extensions

Syntax.
updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

extensions (optional)
A cell array of character arrays that specifies the extensions (file types)
of files for which to search and include in the update processing. By
default, the function searches for files with a .c extension. The function
checks files and updates paths and extensions based on the order in
which you list the extensions in the cell array. For example, if you
specify {'.c' '.cpp'} and a folder contains myfile.c and myfile.cpp,
an instance of myfile would be updated to myfile.c.

Description. Using paths that already exist in a project’s build information,
the updateFilePathsAndExtensions function checks whether any file
references in the build information need to be updated with a path or file
extension. This function can be particularly useful for

6-164

Customizing the Post-Code-Generation Build Process

• Maintaining build information for a toolchain that requires the use of file
extensions

• Updating multiple customized instances of build information for a given
project

updateFileSeparator

Purpose. Change file separator used in project’s build information

Syntax.
updateFileSeparator(buildinfo, separator)

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

separator
A character array that specifies the file separator \ (Windows) or /
(UNIX®) to be applied to all file path specifications.

Description. The updateFileSeparator function changes all instances
of the current file separator (/ or \) in a project’s build information to the
specified file separator.

The default value for the file separator matches the value returned by the
MATLAB command filesep. For makefile based builds, you can override
the default by defining a separator with the MAKEFILE_FILESEP macro in
the template makefile. If the GenerateMakefile parameter is set, the
MATLAB Coder software overrides the default separator and updates the
build information after evaluating the PostCodeGenCommand configuration
parameter.

Programming a Post-Code-Generation Command
A post-code-generation command is a MATLAB file that typically calls
functions that get data from or add data to the build information object. For
example, you can access the project name in the variable projectName and

6-165

6 Generating C/C++ Code from MATLAB® Code

the RTW.BuildInfo object in the variable buildInfo. You can program the
command as a script or a function.

If You Program the Command as
a...

Then the...

Script Script can gain access to the project
(top-level function) name and the
build information directly.

Function Function can pass the project
name and the build information as
arguments.

If your post-code-generation command calls user-defined functions, make sure
that the functions are on the MATLAB path. If the build process cannot find a
function that you use in your command, the process fails.

You can call any combination of build information functions to customize
the post-code-generation build. See “Example: Programming and Using a
Post-Code-Generation Command at the Command Line” on page 6-168

Using a Post-Code-Generation Command in Your
Build
After you program a post-code-generation command, you must include this
command in the build processing. You can include the command from the
project settings dialog box or the command line.

Including a Post-Code-Generation Command in the Project
Settings Dialog Box.

1 In the MATLAB Coder project, click the Build tab.

2 On this tab, click the More settings link to view the project settings for
the selected output type.

3 In the Project Settings dialog box, click the Custom Code tab.

6-166

Customizing the Post-Code-Generation Build Process

4 On this tab, set the Post-code-generation command parameter. Close
the dialog box.

How you use the PostCodeGenCommand option depends on whether
you program the command as a script or a function. See “Including a
Post-Code-Generation Command at the Command Line” on page 6-167
and “Including a Post-Code-Generation Command in the Project Settings
Dialog Box.” on page 6-166.

Including a Post-Code-Generation Command at the Command
Line
Set the PostCodeGenCommand option for the code generation
configuration object (coder.MexCodeConfig, coder.CodeConfig or
coder.EmbeddedCodeConfig).

How you use the PostCodeGenCommand option depends on whether
you program the command as a script or a function. See “Including a
Post-Code-Generation Command at the Command Line” on page 6-167 and
“Including a Post-Code-Generation Command in the Project Settings Dialog
Box.” on page 6-166.

Programming the Post-Code-Generation Command as a Script
Set PostCodeGenCommand to the script name.

At the command line, enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'ScriptName';

Programming the Post-Code-Generation Command as a
Function
Set PostCodeGenCommand to the function signature. When you define the
command as a function, you can specify an arbitrary number of input
arguments. If you want to access the project name, include projectName
as an argument. If you want to modify or access build information, add
buildInfo as an argument.

At the command line, enter:

6-167

6 Generating C/C++ Code from MATLAB® Code

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'FunctionName(projectName, buildInfo)';

Example: Programming and Using a
Post-Code-Generation Command at the Command
Line
The following example shows how to program and use a post-code-generation
command as a function. The setbuildargs function takes the build
information object as a parameter, sets up link options, and adds them to
the build information object.

1 Create a post-code-generation command as a function, setbuildargs,
which takes the buildInfo object as a parameter:

function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library be included
% in the build

linkFlags = {'-lpthread'};
addLinkFlags(buildInfo, linkFlags);

2 Create a code generation configuration object. Set the PostCodeGenCommand
option to 'setbuildargs(buildInfo)' so that this command is included in
the build processing:

cfg = coder.config('mex');
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

3 Using the -config option, generate a MEX function passing the
configuration object to codegen. For example, for the function foo that has
no input parameters:

codegen -config cfg foo

6-168

Code Generation Reports

Code Generation Reports

In this section...

“About Code Generation Reports” on page 6-169

“How to Enable Code Generation Reports” on page 6-172

“Viewing Your MATLAB Code in a Report” on page 6-173

“Viewing Call Stack Information” on page 6-174

“Viewing Generated C/C++ Code in a Report” on page 6-176

“Viewing the Build Summary Information” on page 6-176

“Viewing Error and Warning Messages in a Report” on page 6-177

“Viewing Variables in Your MATLAB Code” on page 6-178

“Viewing Target Build Information” on page 6-184

“Keyboard Shortcuts for the Code Generation Report” on page 6-185

“Report Limitations” on page 6-185

About Code Generation Reports
At code-generation time, MATLAB Coder produces reports to help you debug
your MATLAB code and to verify that your MATLAB code is suitable for
code generation.

Report Generation
If MATLAB Coder detects errors or warnings, the software automatically
produces a code generation report.

Even when there are no errors or warnings, you can also use the option to
request reports.

The report provides links to your MATLAB code and C/C++ code files. It also
provides compile-time type information for the variables and expressions
in your MATLAB code. This information simplifies finding sources of error
messages and aids understanding of type propagation rules.

6-169

6 Generating C/C++ Code from MATLAB® Code

Names and Locations of Code Generation Reports
MATLAB Coder produces code generation reports in the following locations.
The top-level html file at each location is index.html.

• For MEX functions:

output_folder
/mex/primary_function_name/html

• For C/C++ executables:

output_folder/exe/primary_function_name/html

• For C/C++ libraries:

output_folder/lib/primary_function_name/html

Note The default output folder is codegen, but you can specify a different
folder. For more information, see “Specifying Output File Locations” on page
3-39.

Opening Code Generation Reports

Opening Code Generation Reports in the Project Interface. On the
project Build tab, the Build Results pane provides information about the
most recent build. If the code generation report is enabled or build errors
occur, MATLAB Coder generates a report that provides detailed information
about the most recent build and provides a link to the report.

To view the report, click the View report link. After a build completes, this
report provides links to your MATLAB code and generated C/C++ files as well
as compile-time type information for the variables in your MATLAB code. If
build errors occur, it lists all errors and warnings.

Opening Code Generation Reports at the Command Line. If you specify
the -launchreport option, the code generation report opens automatically.

6-170

Code Generation Reports

If no build errors occurred, To open the code generation report, in the
MATLAB Command Window, click the View report link.

If build errors occurred, to open the error report, in the MATLAB Command
Window, click the Open error report link.

Description of Code Generation Reports
When you generate code for MATLAB files from a MATLAB Coder project, or
from the command line using the codegen -report option, MATLAB Coder
generates a report. The following example shows a report for a completed
build.

The report provides the following information, as applicable:

6-171

6 Generating C/C++ Code from MATLAB® Code

• MATLAB code information, including a list of all functions and classes
and their build status

• Call stack information, providing information on the nesting of function
calls

• Links to generated C/C++ code files

• Summary of build results, including type of target and number of warnings
or errors

• List of all error and warning messages

• List of all variables in your MATLAB code

• Target build log that records compilation and linking activities

How to Enable Code Generation Reports

How to Enable Code Generation Reports in the Project Settings
Dialog Box

1 On the project Build tab, click the More settings link.

2 In the Project Settings dialog box, click the Debugging tab.

3 On the Debugging tab, check Always create a code generation report.

If you want the code generation or error report to open automatically when
MATLAB Coder finishes building a project, check Automatically launch
a report if one is generated.

How to Enable Code Generation Reports at the Command Line
Use the codegen function -report option. To generate a standalone C/C++
static library and code generation report for a function foo that has no input
parameters, at the MATLAB command line, enter:

codegen -config:lib -report foo

If you want the code generation or error report to open automatically, use the
-launchreport option instead of the -report option.

6-172

Code Generation Reports

Viewing Your MATLAB Code in a Report
To view your MATLAB code, click the MATLAB code tab. The code
generation report displays the code for the function or class highlighted in the
list on this tab.

The MATLAB code tab provides:

• A list of the MATLAB functions and classes that have been built.
Depending on the build results, the report displays icons next to each
function or class name:

- Errors in function or class.

- Warnings in function or class.

- Completed build, no errors or warnings.

• A filter control. You can use Filter functions and methods to sort your
functions and methods by:

- Size

- Complexity

- Class

Viewing Subfunctions
The code generation report annotates the subfunction with the name of the
parent function in the list of functions on the MATLAB code tab.

For example, if the MATLAB function fcn1 contains the subfunction subfcn,
and fcn2 contains the subfunction subfcn2, the report displays:

fcn1 > subfcn1
fcn2 > subfcn2

Viewing Specializations
If your MATLAB function calls the same function with different types of
inputs, the code generation report numbers each of these specializations
in the list of functions on the MATLAB code tab.

6-173

6 Generating C/C++ Code from MATLAB® Code

For example, if the function fcn calls the function subfcn with different
types of inputs:

function y = fcn(u) %#codegen
% Specializations
y = y + subfcn(single(u));
y = y + subfcn(double(u));

The code generation report numbers the specializations in the list of functions:

fcn > subfcn > 1
fcn > subfcn > 2

Viewing Call Stack Information
The code generation report provides call stack information:

• On the Call stack tab.

• In the list of Calls at the top right of the report.

This list shows all the calls from and to the function or method. If a
function is called from more than one function, this list provides details of
each call-site. Otherwise, the list is disabled.

Viewing Call Stack Information on the Call stack Tab
To view call stack information, click the Call stack tab.

The call stack lists the functions and methods in the order that the top-level
function calls them. It also lists the subfunctions that each function calls.

For more than one entry-point function, the call stack displays a separate
tree for each entry point. You can easily distinguish between shared and
entry-point specific functions. If you click a shared function, the report
highlights all instances of this function. If you click an entry-point specific
function, the report highlights only that instance.

6-174

Code Generation Reports

For example, in the following call stack, ezep1 and ezep2 are entry-point
functions. identity is an entry-point specific function, called only by ezep1.
Functions ezep3 and shared are shared functions.

�������	
�������
	��

�������	
�������
�
������
	�

Viewing Call Sites in the Callers List
If a function or method is called from more than one function or method, or if
the function or method calls other functions or methods, the Calls list provides
details of each call site. To navigate between call sites, select a call site from
the Calls list. If the function is not called more than once, this list is disabled.

If you select the entry-point function ezep2 in the call stack, the Calls list
displays the other call-site in ezep1.

6-175

6 Generating C/C++ Code from MATLAB® Code

Viewing Generated C/C++ Code in a Report
To view a list of the generated C/C++ files, click the C-code tab. The code
generation report displays a list of the generated files. Click a file in the
list to view the code in the code pane.

Tracing Generated Code Back to MATLAB Source Code
You can configure codegen to generate C code that includes the MATLAB
source code as comments. In these auto-generated comments, codegen
precedes each line of source code with a traceability tag that provides details
about the location of the source code. For more information, see “Generation
of Traceable Code” on page 6-85.

For code generated with an Embedded Coder license, these traceability tags
are hyperlinks. Click a tag to go the relevant line in the source code in the
MATLAB editor.

Navigating to C/C++ Code Source Files
When viewing C/C++ code in the code pane, click the blue link to the source
file at the top of the pane to open the associated source code file in the
MATLAB editor.

Viewing Type Definitions
The code generation report provides links to the definitions of data types.
When viewing C/C++ code in the code pane, click the blue link for a data
type to see its definition.

Viewing Custom Code
The report displays custom code with color syntax highlighting. To learn
what these colors mean and how to customize color settings, see “Colors in the
MATLAB Editor — What Do They Mean?” in the MATLAB documentation.

Viewing the Build Summary Information
To view a summary of the build results, including type of target and number
of errors or warnings, click the Summary tab.

6-176

Code Generation Reports

Viewing Error and Warning Messages in a Report
MATLAB Coder automatically reports errors and warnings. If errors occur
during the build, MATLAB Coder does not generate code. The report lists the
messages in the order that MATLAB Coder detects them. It is a best practice
to address the first message in the list, because often subsequent errors and
warnings are related to the first message. If the build produces warnings, but
no errors, MATLAB Coder does generate code.

The code generation report provides information about errors and warnings
by:

• Listing all errors and warnings on the All Messages tab. The report lists
these messages in chronological order.

• Highlighting all errors and warnings on the MATLAB code pane.

• If applicable, recording compilation and linking issues on the Target
Build Log tab. If compilation or linking errors occur, the code generation
report opens with the Target Build Log tab selected so that you can view
the build log.

Viewing Errors and Warnings in the All Messages Tab
If errors or warnings occur during the build, click the All Messages tab to
view a complete list of these messages. The code generation report marks
messages:

Error

Warning

To locate the incorrect line of code for an error or warning in the list, click
the message in the list. The code generation report highlights errors in the
list and MATLAB code in red and highlights warnings in orange. Click the
blue line number next to the incorrect line of code in the MATLAB code pane
to go to the error in the source file.

Note You can fix errors only in the source file.

6-177

6 Generating C/C++ Code from MATLAB® Code

Viewing Error and Warning Information in Your MATLAB Code
If errors or warnings occur during the build, the code generation report
underlines them in your MATLAB code. The report underlines errors in red
and underlines warnings in orange. To learn more about a particular error or
warning, place your pointer over the underlined text.

Viewing Compilation and Linking Errors and Warnings
If compilation or linking errors occur, the code generation report opens with
the Target Build Log tab selected so that you can view the build log.

Viewing Variables in Your MATLAB Code
The report provides compile-time type information for the variables and
expressions in your MATLAB code, including name, type, size, complexity,
and class. It also provides type information for fixed-point data types,
including word length and fraction length. You can use this type information
to find sources of error messages and to understand type propagation rules.

You can view information about the variables in your MATLAB code:

• On the Variables tab, view the list

• In your MATLAB code, place your pointer over the variable name

Viewing Variables in the Variables Tab
To view a list of all the variables in your MATLAB function, click the
Variables tab. The report displays a complete list of variables in the order
that they appear in the function selected on theMATLAB code tab. Clicking
a variable in the list highlights all instances of that variable, and scrolls the
MATLAB code pane so that you can view the first instance.

The report provides the following information about each variable, as
applicable.

• Order

• Name

• Type

6-178

Code Generation Reports

• Size

• Complexity

• Class

• DataTypeMode (DT mode) — for fixed-point data types only. For
more information, see “DataTypeMode” in the Fixed-Point Toolbox
documentation.

• Signed — sign information for built-in data types, signedness information
for fixed-point data types

• Word length (WL) — for fixed-point data types only

• Fraction length (FL) — for fixed-point data types only

Note For more information on viewing fixed-point data types, see “Working
with Fixed-Point Code Generation Reports” in the Fixed-Point Toolbox
documentation.

It only displays a column if at least one variable in the code has information
in that column. For example, if the code does not contain any fixed-point data
types, the report does not display the DT mode, WL or FL columns.

Sorting Variables in the Variables Tab. By default, the report lists the
variables in the order that they appear in the selected function.

You can sort the variables by clicking the column headings on the Variables
tab. To sort the variables by multiple columns, hold down the Shift key when
clicking the column headings.

To restore the list to the original order, click the Order column heading.

Viewing Structures on the Variables Tab. You can expand structures
listed on the Variables tab to display the field properties.

6-179

6 Generating C/C++ Code from MATLAB® Code

If you sort the variables by type, size, complexity or class, a structure and its
fields might not appear sequentially in the list. To restore the list to the
original order, click the Order column heading.

Viewing Information About Variable-Size Arrays in the Variables
Tab. For variable-size arrays, the Size field includes information on the
computed maximum size of the array. The size of each array dimension that
varies is prefixed with a colon :.

In the following report, variable A is variable-size. Its maximum computed
size is 1×100.

If the code generation software cannot compute the maximum size of a
variable-size array, the report displays the size as :?.

6-180

Code Generation Reports

If you declare a variable-size array and then subsequently fix the dimensions
of this array in the code, the report appends * to the size of the variable. In
the generated C code, this variable appears as a variable-size array, but the
size of its dimensions do not change during execution.

For more information on how to use the size information for variable-sized
arrays, see “How Working with Variable-Size Data Is Different for Code
Generation” in the Code Generation from MATLAB documentation.

Viewing Renamed Variables in the Variables Tab. If your MATLAB
function reuses a variable with different size, type, or complexity, the code
generation software attempts to create separate, uniquely named variables
in the generated code. For more information, see “Reusing the Same
Variable with Different Properties” in the Code Generation from MATLAB
documentation. The report numbers the renamed variables in the list on the
Variables tab. When you place your pointer over a renamed variable, the
report highlights only the instances of this variable that share the same data
type, size, and complexity.

For example, suppose your code uses the variable t in a for-loop to hold a
scalar double, and reuses it outside the for-loop to hold a 5x5 matrix. The
report displays two variables, t>1 and t>2 in the list on the Variables tab.

6-181

6 Generating C/C++ Code from MATLAB® Code

Viewing Information About Variables and Expressions in Your
MATLAB Function Code
To view information about a particular variable or expression in your
MATLAB function code, on the MATLAB code pane, place your pointer
over the variable name or expression. The report highlights variables and
expressions in different colors:

Green, when the variable has data type information at this location
in the code.

For variable-size arrays, the Size field includes information on the computed
maximum size of the array. The size of each array dimension that varies is
prefixed with a colon :. Here the array A is variable-sized with a maximum
computed size of 1 x 100.

6-182

Code Generation Reports

Pink, when the variable has no data type information.

Purple, information about expressions. You can also view information
about expressions in your MATLAB code. On the MATLAB code pane, place
your pointer over an expression . The report highlights expressions in purple
and provides more detailed information.

Red, when there is error information for an expression. If the code
generation software cannot compute the maximum size of a variable-size
array, the report underlines the variable name and provides error information.

6-183

6 Generating C/C++ Code from MATLAB® Code

Viewing Target Build Information
If the build completes, MATLAB Coder provides target build information on
the Target Build Log tab, including:

• Build folder

Clicking this link changes the MATLAB current folder to the build folder.

• Make wrapper

The batch file name that MATLAB Coder used for this build.

• Build log

If compilation or linking errors occur, the code generation report opens with
the Target Build Log tab selected so that you can view the build log.

6-184

Code Generation Reports

Keyboard Shortcuts for the Code Generation Report
You can use the following keyboard shortcuts to navigate between the
different panes in the code generation report. Once you have selected a pane,
use the Tab key to advance through data in that pane.

To select ... Use...

MATLAB code Tab Ctrl+m

Call stack Tab Ctrl+k

C code Tab Ctrl+c

Code Pane Ctrl+w

Summary Tab Ctrl+s

All Messages Tab Ctrl+a

Variables Tab Ctrl+v

Target Build Log Tab Ctrl+t

Report Limitations
The report displays information about the variables and expressions in your
MATLAB code with the following limitations:

varargin and varargout

The report does not support varargin and varargout arrays.

Loop Unrolling

The report does not display full information for unrolled loops. It displays
data types of one arbitrary iteration.

Dead Code

The report does not display information about any dead code.

6-185

6 Generating C/C++ Code from MATLAB® Code

Structures

The report does not provide complete information about structures.

• On theMATLAB code pane, the report does not provide information about
all structure fields in the struct() constructor.

• On the MATLAB code pane, if a structure has a nonscalar field, and an
expression accesses an element of this field, the report does not provide
information for the field.

Column Headings on Variables Tab

If you scroll through the list of variables, the report does not display the
column headings on the Variables tab.

Multiline Matrices

On the MATLAB code pane, the report does not support selection of
multiline matrices. It supports only selection of individual lines at a time.
For example, if you place your pointer over the following matrix, you cannot
select the entire matrix.

out1 = [1 2 3;
4 5 6];

The report does support selection of single line matrices.

out1 = [1 2 3; 4 5 6];

6-186

Troubleshooting

Troubleshooting

Runtime Stack Overflow
If your C compiler reports a runtime stack overflow, set the value of the
maximum stack usage parameter to be less than the available stack size.
In a project, on the Project Settings dialog box Memory tab, set the
Stack usage max parameter. For command-line configuration objects
(coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig),
set the StackUsageMax parameter.

6-187

6 Generating C/C++ Code from MATLAB® Code

6-188

7

Deploying Generated Code

• “Calling a C Static Library Function from C Code” on page 7-2

• “Calling a C/C++ Static Library Function from MATLAB Code” on page 7-4

• “Calling Generated C/C++ Functions” on page 7-6

• “Using a MATLAB® Coder™ Dynamic Library in a Simple Microsoft®

Visual Studio® Project” on page 7-9

• “Custom C/C++ Code Integration” on page 7-12

7 Deploying Generated Code

Calling a C Static Library Function from C Code
This example shows how to call a generated C library function from C code. It
uses the C static library function absval described in “Calling a C/C++ Static
Library Function from MATLAB Code” on page 7-4.

1 Write a main function in C that does the following:

• Includes the generated header file, which contains the function
prototypes for the library function.

• Calls the initialize function before calling the library function for the
first time.

• Calls the terminate function after calling the library function for the
last time.

Here is an example of a C main function that calls the library function
absval:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "absval.h"

int main(int argc, char *argv[])
{

absval_initialize();

printf("absval(-2.75)=%g\n", absval(-2.75));

absval_terminate();

return 0;
}

2 Configure your target to integrate this custom C main function with your
generated code, as described in “Custom C/C++ Code Integration” on page
7-12.

7-2

Calling a C Static Library Function from C Code

For example, you can define a configuration object that points to the
custom C code:

a Create a configuration object. At the MATLAB prompt, enter:

cfg = coder.config('exe');

b Set custom code properties on the configuration object, as in these
example commands:

cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';

3 Generate the C executable. Use the -args option to specify that the input
is a real, scalar double. At the MATLAB prompt, enter:

codegen -config cfg absval -args {0}

4 Call the executable. For example:

absval(-2.75)

7-3

7 Deploying Generated Code

Calling a C/C++ Static Library Function from MATLAB Code
This example shows how to call a C/C++ library function from MATLAB code
that is suitable for code generation.

Suppose you have a MATLAB file absval.m that contains the following
function:

function y = absval(u) %#codegen
y = abs(u);

end

To generate a C static library function and call it from MATLAB code:

1 Generate the C library for absval.m.

codegen -config:lib absval -args {0.0}

Here are key points about this command:

• The -config:lib option instructs MATLAB Coder to generate absval
as a C static library function.

The default target language is C. To change the target language to C++,
see “Specifying a Language for Code Generation” on page 6-22.

• MATLAB Coder creates the library absval.lib (or absval.a
on Linus Torvalds’ Linux) and header file absval.h in the
folder /emcprj/rtwlib/absval. It also generates the functions
absval_initialize and absval_terminate in the C library.

• The -args option specifies the class, size, and complexity of the primary
function input u by example, as described in “Defining Input Properties
by Example at the Command Line” on page 6-40.

2 Write a MATLAB function to call the generated library:

%#codegen
function y = callabsval

% Call the initialize function before
% calling the C function for the first time
coder.ceval('absval_initialize');

7-4

Calling a C/C++ Static Library Function from MATLAB® Code

y = -2.75;
y = coder.ceval('absval',y);

% Call the terminate function after
% calling the C function for the last time
coder.ceval('absval_terminate');

The MATLAB function callabsval uses the interface coder.ceval
to call the generated C functions absval_initialize, absval, and
absval_terminate. You must use this function to call C functions from
generated code. For more information, see “Calling Generated C/C++
Functions” on page 7-6.

3 Convert the code in callabsval.m to a MEX function so that you can call
the C library function absval directly from the MATLAB prompt.

a Generate the MEX function using codegen as follows:

• Create a code generation configuration object for a MEX function:

cfg = coder.config

• On Microsoft Windows platforms, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.lib
codegen/lib/absval/absval.h

By default, this command creates, in the current folder, a MEX
function named callabsval_mex

On the Linus Torvalds’ Linux platform, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.a
codegen/lib/absval/absval.h

b At the MATLAB prompt, call the C library by running the MEX function.
For example, on Windows:

callabsval_mex

7-5

7 Deploying Generated Code

Calling Generated C/C++ Functions

In this section...

“Conventions for Calling Functions in Generated Code” on page 7-6

“How to Call C/C++ Functions from MATLAB Code” on page 7-6

“Calling Initialize and Terminate Functions” on page 7-7

“Calling C/C++ Functions with Multiple Outputs” on page 7-8

“Calling C/C++ Functions that Return Arrays” on page 7-8

Conventions for Calling Functions in Generated Code
When generating code, MATLAB Coder uses the following calling conventions:

• Passes arrays by reference as inputs.

• Returns arrays by reference as outputs.

• Unless you optimize your code by using the same variable as both input
and output, passes scalars by value as inputs. In that case, MATLAB Coder
passes the scalar by reference.

• Returns scalars by value for single-output functions.

• Returns scalars by reference:

- For functions with multiple outputs.

- When you use the same variable as both input and output.

For more information about optimizing your code by using the same variable
as both input and output, see “Eliminating Redundant Copies of Function
Inputs (A=foo(A))” on page 6-62.

How to Call C/C++ Functions from MATLAB Code
You can call the C/C++ functions generated for libraries as custom C/C++ code
from MATLAB functions that are suitable for code generation. For static
libraries, you must use the coder.ceval function to wrap the function calls,
as in this example:

7-6

Calling Generated C/C++ Functions

function y = callmyCFunction %#codegen
y = 1.5;
y = coder.ceval('myCFunction',y);

end

Here, the MATLAB function callmyCFunction calls the custom C function
myCFunction, which takes one input argument.

For dynamically-linked libraries, you can also use coder.ceval.

There are additional requirements for calling C/C++ functions from the
MATLAB code in the following situations:

• You want to call generated C/C++ libraries or executables from a MATLAB
function. Call housekeeping functions generated by MATLAB Coder, as
described in “Calling Initialize and Terminate Functions” on page 7-7.

• You want to call C/C++ functions that are generated from MATLAB
functions that have more than one output, as described in “Calling C/C++
Functions with Multiple Outputs” on page 7-8.

• You want to call C/C++ functions that are generated from MATLAB
functions that return arrays, as described in “Calling C/C++ Functions
that Return Arrays” on page 7-8.

Calling Initialize and Terminate Functions
When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder automatically generates two housekeeping
functions that you must call along with the C/C++ function.

Housekeeping Function When to Call

primary_function_name_initialize Before you call your C/C++
executable or library function
for the first time

primary_function_name_terminate After you call your C/C++
executable or library function
for the last time

7-7

7 Deploying Generated Code

From C/C++ code, you can call these functions directly. However, to call them
from MATLAB code that is suitable for code generation, you must use the
coder.ceval function. coder.ceval is a MATLAB Coder function, but is not
supported by the native MATLAB language. Therefore, if your MATLAB code
uses this function, use coder.target to disable these calls in MATLAB and
replace them with equivalent functions.

Calling C/C++ Functions with Multiple Outputs
Although MATLAB Coder can generate C/C++ code from MATLAB functions
that have multiple outputs, the generated C/C++ code cannot return multiple
outputs directly because the C/C++ language does not support multiple return
values. Instead, you can achieve the effect of returning multiple outputs from
your C/C++ function by using coder.wref with coder.ceval.

See Also

• “Calling Generated C/C++ Functions” on page 7-6

• coder.wref function reference information

• coder.ceval function reference information

Calling C/C++ Functions that Return Arrays
Although MATLAB Coder can generate C/C++ code from MATLAB functions
that return values as arrays, the generated code cannot return arrays by
value because the C/C++ language is limited to returning single, scalar
values. Instead, you can return arrays from your C/C++ function by reference
as pointers by using coder.wref with coder.ceval.

See Also

• “Calling Generated C/C++ Functions” on page 7-6

• coder.wref function reference information

• coder.ceval function reference information

7-8

Using a MATLAB® Coder™ Dynamic Library in a Simple Microsoft® Visual Studio® Project

Using a MATLAB Coder Dynamic Library in a Simple
Microsoft Visual Studio Project

These steps outline how to create and configure a simple Microsoft Visual
Studio® Win32 Console Application project to call a dynamic library (DLL)
that was generated by MATLAB Coder. This procedure provides information
on how to do this in Microsoft Visual Studio 2008, the steps might differ in
other versions of Microsoft Visual Studio.

1 Create a MATLAB function foo and save it as foo.m in a local writable
folder, for example, c:\dll_test.

function c = foo(a) %#codegen
c = sqrt(a);

end

2 Generate a DLL for the MATLAB function foo, using the -args option to
specify that the input a is a real double.

codegen -report -config:dll foo -args {0}

On Microsoft Windows systems, codegen generates a C dynamic library,
foo.dll, and supporting files, in the default folder, codegen/dll/foo.

3 In Microsoft Visual Studio, create an empty Win32 Console Application
project.

4 Verify that the project configuration specifies architecture that matches
your computer. By default, MATLAB Coder builds a DLL for the platform
that you are working on, but Microsoft Visual Studio builds for Win32.

In Microsoft Visual Studio 2008:

a Select Build > Configuration Manager.

b In the Configuration Manager, set Active solution platform to
match your platform.

5 Configure the project to use the release version of the C runtime library.
By default, the Microsoft Visual Studio project uses the debug version of
the C runtime library, but the DLL generated by MATLAB Coder uses the
release version. For example, in Microsoft Visual Studio 2008:

7-9

7 Deploying Generated Code

a Select Build > Configuration Manager.

b In the Configuration Manager, set Active solution configuration
to Release.

6 Create a main file that calls foo.dll. The main function must:

• Include the generated header file, which contains the function prototypes
for the library function.

• Call the initialize function before calling the library function for the
first time.

• Call the terminate function after calling the library function for the
last time.

For example:

#include "foo.h"
#include "foo_initialize.h"
#include "foo_terminate.h"
#include <stdio.h>

int main()
{

foo_initialize();
printf("%f\n", foo(25));
foo_terminate();
getchar();
return 0;

}

7 Add the main file to the project.

8 In the project, add the folder containing the generated header file to the
list of additional include directories. For example, in Microsoft Visual
Studio 2008:

a Right-click the project name and select Properties.

b Under C/C++ > General, add the folder c:\dll_test\codegen\dll\foo
to Additional Include Directories.

7-10

Using a MATLAB® Coder™ Dynamic Library in a Simple Microsoft® Visual Studio® Project

9 Add the folder containing the .lib file (by default, this is the folder
containing the .dll) to the list of additional library directories. For
example, in Microsoft Visual Studio 2008:

a Right-click the project name and select Properties.

b Under Linker > General, add the folder
c:\dll_test\codegen\dll\foo to Additional Library Directories.

10 Add the .lib file name to the list of additional libraries. For example, in
Microsoft Visual Studio 2008:

a Right-click the project name and select Properties.

b Under Linker > Input, add foo.lib to Additional Dependencies.

You are now ready to build your project.

Note To run the application, you must either add the folder containing
the generated DLL to your path or run from the folder that contains
the DLL.

7-11

7 Deploying Generated Code

Custom C/C++ Code Integration

In this section...

“About Custom C/C++ Code Integration with MATLAB® Coder™” on page
7-12

“Specifying Custom C/C++ Files in the Project Settings Dialog Box” on
page 7-12

“Specifying Custom C/C++ Files at the Command Line” on page 7-13

“Specifying Custom C/C++ Files with Configuration Objects” on page 7-13

About Custom C/C++ Code Integration with MATLAB
Coder
You integrate custom C/C++ code with generated C/C++ code by specifying the
locations of your external source files, header files, and libraries to MATLAB
Coder. You can specify custom C/C++ files from the project settings dialog
box, the command line, or with configuration objects.

Specifying Custom C/C++ Files in the Project Settings
Dialog Box

1 On the project Build tab, click the More settings link to open the Project
Settings dialog box.

2 On the Custom Code tab, under Custom C-code to include in
generated files, specify Source file and Header file. Source file
specifies the code to appear at the top of generated C/C++ source files.
Header file specifies the code to appear at the top of generated header files.

Custom Code Property Description

Under Additional files and directories to be built, provide an absolute path or a path
relative to the project folder.

Include directories Specifies a list of folders that contain custom header, source,
object, or library files. Separate list items with a semicolon.

7-12

Custom C/C++ Code Integration

Custom Code Property Description

Source files Specifies additional custom C/C++ files to be compiled with the
MATLAB file. Separate list items with a semicolon.

Libraries Specifies the names of object or library files to be linked with
the generated code. Separate list items with a semicolon.

Under Custom C-code to include in generated files

Source file Specifies code to appear at the top of generated C/C++ source
files.

Header file Specifies custom code to appear at the top of generated header
files

Specifying Custom C/C++ Files at the Command Line
When you compile MATLAB function with MATLAB Coder, you can specify
custom C/C++ files — such as source, header, and library files — on the
command line along with your MATLAB file. For example, suppose you
want to generate an embeddable C code executable that integrates a custom
C function myCfcn with a MATLAB function myMfcn that has no input
parameters. The custom source and header files for myCfcn reside in the
folder C:\custom. You can use the following command to generate the code:

codegen C:\custom\myCfcn.c C:\custom\myCfcn.h myMfcn

Specifying Custom C/C++ Files with Configuration
Objects
You can specify custom C/C++ files by setting custom code properties on
configuration objects.

1 Define a configuration object, as described in “Creating Configuration
Objects” on page 6-30.

For example:

cc = coder.config('lib');

2 Set one or more of the custom code properties.

7-13

7 Deploying Generated Code

Custom Code Property Description

CustomInclude Specifies a list of folders that contain custom header, source,
object, or library files.

Note If your folder path name contains spaces, you must
enclose it in double quotes:

cc.CustomInclude = '"C:\Program Files\MATLAB\work"'

CustomSource Specifies additional custom C/C++ files to be compiled with
the MATLAB file.

CustomLibrary Specifies the names of object or library files to be linked with
the generated code.

CustomSourceCode Specifies code to insert at the top of each generated C/C++
source file.

CustomHeaderCode Specifies custom code to insert at the top of each generated
C/C++ header file.

For example:

cc.CustomInclude = 'C:\custom\src C:\custom\lib';
cc.CustomSource = 'cfunction.c';
cc.CustomLibrary = 'chelper.obj clibrary.lib';
cc.CustomSourceCode = '#include "cgfunction.h"';

3 Compile the MATLAB code specifying the code generation configuration
object.

Note If you generate code for a function that has input parameters, you
must specify the inputs. For more information, see “Primary Function
Input Specification” on page 6-34.

codegen -config cc myFunc

7-14

Custom C/C++ Code Integration

4 Call custom C/C++ functions.

From... Call...

C/C++ source code Custom C/C++ functions directly

MATLAB code, compiled on the
MATLAB Coder path

Custom C/C++ functions using
coder.ceval.

For example, from MATLAB code:

...
y = 2.5;
y = coder.ceval('myFunc',y);
...

See Also

• “Calling Generated C/C++ Functions” on page 7-6

7-15

7 Deploying Generated Code

7-16

8

Accelerating MATLAB
Algorithms

• “Workflow for Accelerating MATLAB Algorithms” on page 8-2

• “How to Accelerate MATLAB Algorithms” on page 8-4

• “Modifying MATLAB Code for Acceleration” on page 8-5

• “Speeding Up MATLAB Algorithms with the Basic Linear Algebra
Subprograms (BLAS) Library” on page 8-11

• “Controlling Run-Time Checks” on page 8-14

• “Accelerating Simulation of Bouncing Balls” on page 8-17

8 Accelerating MATLAB® Algorithms

Workflow for Accelerating MATLAB Algorithms

8-2

Workflow for Accelerating MATLAB® Algorithms

See Also

• Chapter 3, “Setting Up a MATLAB® Coder™ Project”

• Chapter 4, “Preparing MATLAB Code for C/C++ Code Generation”

• Chapter 5, “Testing MEX Functions in MATLAB”

• “Modifying MATLAB Code for Acceleration” on page 8-5

• “Code Acceleration and Code Generation from MATLAB for Fixed-Point
Algorithms” in the Fixed-Point Toolbox documentation

8-3

8 Accelerating MATLAB® Algorithms

How to Accelerate MATLAB Algorithms
For many applications, you can generate MEX functions to accelerate
MATLAB algorithms. If you have a Fixed-Point Toolbox license, you can
generate MEX functions to accelerate fixed-point MATLAB algorithms. After
generating a MEX function, test it in MATLAB to verify that its operation is
functionally equivalent to the original MATLAB algorithm. Then compare the
speed of execution of the MEX function with that of the MATLAB algorithm.
If the MEX function speed is not sufficiently fast, you might improve it using
one of the following methods:

• Choosing a different C/C++ compiler.

It is important that you use a C/C++ compiler that is designed to generate
high performance code.

Note The default MATLAB compiler for Windows 32–bit platforms, lcc,
is designed to generate code quickly. It is not designed to generate high
performance code.

• “Modifying MATLAB Code for Acceleration” on page 8-5

• “Speeding Up MATLAB Algorithms with the Basic Linear Algebra
Subprograms (BLAS) Library” on page 8-11

• “Controlling Run-Time Checks” on page 8-14

8-4

Modifying MATLAB® Code for Acceleration

Modifying MATLAB Code for Acceleration

In this section...

“How to Modify Your MATLAB Code for Acceleration” on page 8-5

“Unrolling for-loops” on page 8-5

“Inlining Code” on page 8-7

“Eliminating Redundant Copies of Function Inputs (A=foo(A))” on page 8-8

How to Modify Your MATLAB Code for Acceleration
You might improve the efficiency of the generated code using one of the
following optimizations:

• “Unrolling for-loops” on page 6-59

• “Inlining Code” on page 6-61

• “Eliminating Redundant Copies of Function Inputs (A=foo(A))” on page 6-62

Unrolling for-loops
Unrolling for-loops eliminates the loop logic by creating a separate copy of
the loop body in the generated code for each iteration. Within each iteration,
the loop index variable becomes a constant. By unrolling short loops with
known bounds at compile time, MATLAB generates highly optimized code
with no branches.

You can also force loop unrolling for individual functions by wrapping the loop
header in a coder.unroll function. For more information, see coder.unroll.

Limiting Copying the Body of a for-loop in Generated Code
To limit the number of times to copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a
vector of length n and assign random numbers to specific elements. Add a
test function test_unroll. This function calls getrand(n) with n equal
to values both less than and greater than the threshold for copying the
for-loop in generated code.

8-5

8 Accelerating MATLAB® Algorithms

function [y1, y2] = test_unroll() %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation

% Calling getrand 8 times triggers unroll
y1 = getrand(8);
% Calling getrand 50 times does not trigger unroll
y2 = getrand(50);

function y = getrand(n)
% Turn off inlining to make
% generated code easier to read
coder.inline('never');

% Set flag variable dounroll to repeat loop body
% only for fewer than 10 iterations
dounroll = n < 10;
% Declare size, class, and complexity
% of variable y by assignment
y = zeros(n, 1);
% Loop body begins
for i = coder.unroll(1:2:n, dounroll)

if (i > 2) && (i < n-2)
y(i) = rand();

end;
end;
% Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C library
code for test_unroll :

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body
of the for-loop (unrolls the loop) because the number of iterations is less
than 10:

static void m_getrand(real_T y[8])
{

int32_T i0;
for(i0 = 0; i0 < 8; i0++) {

y[i0] = 0.0;

8-6

Modifying MATLAB® Code for Acceleration

}
/* Loop body begins */
y[2] = m_rand();
y[4] = m_rand();
/* Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because
the number of iterations is greater than 10:

static void m_b_getrand(real_T y[50])
{

int32_T i;
for(i = 0; i < 50; i++) {

y[i] = 0.0;
}
/* Loop body begins */
for(i = 0; i < 50; i += 2) {

if((i + 1 > 2) && (i + 1 < 48)) {
y[i] = m_rand();

}
}
/* Loop body ends */

}

Inlining Code
MATLAB uses internal heuristics to determine whether or not to inline
functions in the generated code. You can use the coder.inline directive to
fine-tune these heuristics for individual functions. For more information,
see coder.inline.

Preventing Function Inlining
In this example, function foo is not inlined in the generated code:

function y = foo(x)
coder.inline('never');
y = x;

end

8-7

8 Accelerating MATLAB® Algorithms

Using Inlining in Control Flow Statements
You can use coder.inline in control flow code. If the software detects
contradictory coder.inline directives, the generated code uses the default
inlining heuristic and issues a warning.

Suppose you want to generate code for a division function that will be
embedded in a system with limited memory. To optimize memory use in the
generated code, the following function, inline_division, manually controls
inlining based on whether it performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)

coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.

coder.inline('never');
end

if any(divisor == 0)
error('Can not divide by 0');

end

y = dividend / divisor;

Eliminating Redundant Copies of Function Inputs
(A=foo(A))
You can reduce the number of copies in your generated code by writing
functions that use the same variable as both an input and an output. For
example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a
variable acts as both input and output, MATLAB passes the variable by

8-8

Modifying MATLAB® Code for Acceleration

reference in the generated code instead of redundantly copying the input to a
temporary variable. In the preceding example, input A is passed by reference
in the generated code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(real_T *A, real_T B)
{

*A *= B;
}
...

The reference parameter optimization reduces memory usage and improves
run-time performance, especially when the variable passed by reference is
a large data structure. To achieve these benefits at the call site, call the
function with the same variable as both input and output.

By contrast, suppose you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

MATLAB generates code that passes the inputs by value and returns the
value of the output:

...
/* Function Definitions */
real_T foo2(real_T A, real_T B)
{

return A * B;
}
...

In some cases, the output of the function cannot be a modified version of its
inputs. If you do not use the inputs later in the function, you can modify
your code to operate on the inputs instead of on a copy of the inputs. One
method is to create additional return values for the function. For example,
consider the code:

function y1=foo(u1) %#codegen

8-9

8 Accelerating MATLAB® Algorithms

x1=u1+1;
y1=bar(x1);

end

function y2=bar(u2)
% Since foo does not use x1 later in the function,
% it would be optimal to do this operation in place
x2=u2.*2;
% The change in dimensions in the following code
% means that it cannot be done in place
y2=[x2,x2];

end

You can modify this code to eliminate redundant copies. The changes are
highlighted in bold.

function y1=foo(u1) %#codegen
u1=u1+1;
[y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)
u2=u2.*2;

% The change in dimensions in the following code
% still means that it cannot be done in place
y2=[u2,u2];

end

8-10

Speeding Up MATLAB® Algorithms with the Basic Linear Algebra Subprograms (BLAS) Library

Speeding Up MATLAB Algorithms with the Basic Linear
Algebra Subprograms (BLAS) Library

In this section...

“How MATLAB Uses the BLAS Library for MEX Code Generation” on page
8-11

“How to Use the BLAS Library for C/C++ Code Generation” on page 8-11

“When to Disable BLAS Library Support” on page 8-12

“How to Disable BLAS Library Support” on page 8-12

“Supported Compilers” on page 8-13

How MATLAB Uses the BLAS Library for MEX Code
Generation
The Basic Linear Algebra Subprograms (BLAS) Library is a library of
external linear algebra routines optimized for fast computation of low-level
matrix operations. By default, MATLAB functions call BLAS library routines
to accelerate MEX function execution, except in these cases:

• Your C/C++ compiler does not support the BLAS library.

• The size of the matrix is below a minimum threshold.

MATLAB for code generation uses a heuristic to evaluate matrix size
against the overhead of calling an external library.

How to Use the BLAS Library for C/C++ Code
Generation
If you have an Embedded Coder license, you can set up MATLAB Coder to
use a Code Replacement Library to map the following operations to a BLAS
Subroutine:

• Matrix multiplication

• Matrix multiplication with transpose on single or both inputs

• Matrix multiplication with Hermitian operation on single or both inputs

8-11

8 Accelerating MATLAB® Algorithms

To run a demo showing you how to do this, see Replacing Math Functions
and Operators.

Note Requires an Embedded Coder license.

See Also

• “Code Replacement” in the Embedded Coder documentation.

When to Disable BLAS Library Support
Consider disabling BLAS library support for MATLAB functions when:

• You are executing code on a 64-bit platform and the number of elements
in a matrix exceeds 32 bits.

MATLAB Coder automatically truncates the matrix size to 32 bits.

• Your platform does not provide a robust implementation of BLAS routines.

How to Disable BLAS Library Support
MATLAB Coder software enables BLAS library support by default. However,
you can disable this feature explicitly from the project settings dialog box, the
command line, or a MEX configuration dialog box.

Disabling BLAS Library Support in the Project Settings Dialog
Box
1 On the MATLAB Coder project Build tab, click More settings.

2 On the Project Settings dialog box All Settings tab, set Enable BLAS
library if possible to No.

Disabling BLAS Library Support at the Command Line

1 In the MATLAB workspace, define the MEX configuration object by issuing
a constructor command, like this:

8-12

Speeding Up MATLAB® Algorithms with the Basic Linear Algebra Subprograms (BLAS) Library

mexcfg = coder.config('mex');

2 Disable the BLAS option.

mexcfg.EnableBLAS = false;

Supported Compilers
MATLAB Coder uses the BLAS library on all C/C++ compilers except:

• Watcom

• Intel

• Borland

The default MATLAB compiler for Windows 32–bit platforms, lcc, supports
the BLAS library, but it is not designed to generate high performance code. To
install a different C/C++ compiler, use the mex -setup command, as described
in “Building MEX-Files” in the MATLAB External Interfaces documentation.

8-13

8 Accelerating MATLAB® Algorithms

Controlling Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 8-14

“When to Disable Run-Time Checks” on page 8-15

“How to Disable Run-Time Checks” on page 8-15

Types of Run-Time Checks
The code generated for your MATLAB functions includes the following
run-time checks and external calls to MATLAB functions.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for
MATLAB functions and stop execution with a diagnostic message.

Caution These checks are enabled by default. Without memory integrity
checks, violations result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated
for MATLAB functions. Enabling responsiveness checks also enables
graphics refreshing.

Caution These checks are enabled by default. Without these checks, the
only way to end a long-running execution might be to terminate MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results,
are enabled by default for debugging purposes. For more information
about extrinsic functions, see “Declaring MATLAB Functions as Extrinsic
Functions”.

8-14

Controlling Run-Time Checks

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more
generated code and slower MEX function execution than generating code with
the checks disabled. Similarly, extrinsic calls are time consuming and have
an adverse effect on performance. Disabling run-time checks and extrinsic
calls usually results in streamlined generated code and faster MEX function
execution. The following table lists issues to consider when disabling run-time
checks and extrinsic calls.

Consider disabling... Only if...

Memory integrity checks You have already verified that
all array bounds and dimension
checking is unnecessary.

Responsiveness checks You are sure that you will not need
to stop execution of your application
using Ctrl+C.

Extrinsic calls You are using extrinsic calls only
for functions that do not affect
application results.

How to Disable Run-Time Checks
You can disable run-time checks explicitly from the project settings dialog
box, the command line, or a MEX configuration dialog box.

Disabling Run-Time Checks in the Project Settings Dialog Box

1 On the MATLAB Coder project Build tab, click More settings.

2 On the Project Settings dialog box Speed tab, clear Ensure memory
integrity, Enable responsiveness to CTRL+C and graphics
refreshing or Extrinsic calls, as applicable.

8-15

8 Accelerating MATLAB® Algorithms

Disabling Run-Time Checks From the Command Line

1 In the MATLAB workspace, define the MEX configuration object:

mexcfg = coder.config('mex');

2 At the command line, set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties to false, as applicable:

mexcfg.IntegrityChecks = false;
mexcfg.ExtrinsicCalls = false;
mexcfg.ResponsivenessChecks = false;

8-16

Accelerating Simulation of Bouncing Balls

Accelerating Simulation of Bouncing Balls
This example shows how to accelerate MATLAB algorithm execution using a
generated MEX function. It uses the ’codegen’ command to generate a MEX
function for a complicated application that uses multiple MATLAB files.
You can use ’codegen’ to check that your MATLAB code is suitable for code
generation and, in many cases, to accelerate your MATLAB algorithm. You
can run the MEX function to check for run-time errors.

Prerequisites

To run this demo, you must install a C compiler and set it up using the ’mex
-setup’ command. For more information, see Setting Up Your C Compiler.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd).
The new folder will contain only the files that are relevant for this example. If
you do not want to affect the current folder (or if you cannot generate files in
this folder), change your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_bouncing_balls');

About the ’run_balls’ Function

The run_balls.m function takes a single input to specify the number of
bouncing balls to simulate. The simulation runs and plots the balls bouncing
until there is no energy left and returns the state (positions) of all the balls.

type run_balls

% balls = run_balls(n)
% Given 'n' number of balls, run a simulation until the balls come to a
% complete halt (or when the system has no more kinetic energy).
function balls = run_balls(n) %#codegen

% Copyright 2010-2011 The MathWorks, Inc.

8-17

8 Accelerating MATLAB® Algorithms

% Seeding the random number generator will guarantee that we get
% precisely the same simulation every time we call this function.
old_settings = rng(1283,'V4');

% The 'cdata' variable is a matrix representing the colordata bitmap which
% will be rendered at every time step.
cdata = zeros(400,600,'uint8');

% Setup figure windows
im = setup_figure_window(cdata);

% Get the initial configuration for 'n' balls.
balls = initialize_balls(cdata, n);

energy = 2; % Something greater than 1
while energy > 1

% Clear the bitmap
cdata(:,:) = 0;
% Apply one iteration of movement
[cdata,balls,energy] = step_function(cdata,balls);
% Render the current state
cdata = draw_balls(cdata, balls);
refresh_image(im, cdata);

end

% Restore RNG settings.
rng(old_settings);

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the
name of the MATLAB file to compile. Pass an example input (-args 0) to
indicate that the generated MEX function will be called with an input of
type double.

codegen run_balls -args 0

The ’run_balls’ function calls other MATLAB functions, but you need to
specify only the entry-point function when calling ’codegen’.

8-18

Accelerating Simulation of Bouncing Balls

By default, ’codegen’ generates a MEX function named ’run_balls_mex’ in the
current folder. This allows you to test the MATLAB code and MEX function
and compare the results.

Compare Results

Run and time the original ’run_balls’ function followed by the generated MEX
function.

tic, run_balls(50); t1 = toc;
tic, run_balls_mex(50); t2 = toc;

Estimated speed up is:

fprintf(1, 'Speed up: x ~%2.1f\n', t1/t2);

Speed up: x ~2.0

Clean Up

Remove files and return to original folder

8-19

8 Accelerating MATLAB® Algorithms

Run Command: Cleanup

cleanup

8-20

9

Calling C/C++ Functions
from Generated Code

• “MATLAB® Coder™ Interface to C/C++ Code” on page 9-2

• “Calling External C/C++ Functions” on page 9-7

• “Returning Multiple Values from C Functions” on page 9-9

• “How MATLAB® Coder™ Infers C/C++ Data Types” on page 9-10

9 Calling C/C++ Functions from Generated Code

MATLAB Coder Interface to C/C++ Code

In this section...

“How to Call C/C++ Code from Generated Code” on page 9-2

“Why Call C/C++ Functions from Generated Code?” on page 9-2

“Calling External C/C++ Functions” on page 9-3

“Passing Arguments by Reference to External C/C++ Functions” on page 9-3

“Declaring Data” on page 9-5

How to Call C/C++ Code from Generated Code
MATLAB Coder provides a set of functions for:

• Calling external C/C++ code from generated code (see “Calling External
C/C++ Functions” on page 9-3)

• Passing arguments by reference to C/C++ code (see “Passing Arguments by
Reference to External C/C++ Functions” on page 9-3)

• Manipulating C/C++ data (see “Declaring Data” on page 9-5)

By using these functions, you gain unrestricted access to external C/C++
code. Misuse of these functions or errors in your C/C++ code can destabilize
MATLAB when generating MEX functions.

Why Call C/C++ Functions from Generated Code?
Call C/C++ functions from generated code when you want to:

• Use legacy C/C++ code

• Use your own optimized C/C++ functions instead of generated code.

• Interface your libraries and hardware with MATLAB functions.

.

9-2

MATLAB® Coder™ Interface to C/C++ Code

Calling External C/C++ Functions
Use the coder.ceval function to call external C/C++ functions. coder.ceval
passes function input and output arguments to C/C++ functions either by
value or by reference.

You must define these called functions in external C/C++ source files or in
C/C++ libraries. You then need to include C/C++ source files, libraries, object
files, and header files in the compilation to configure your environment.

Passing Arguments by Reference to External C/C++
Functions
By default, coder.ceval passes arguments by value to the C/C++ function
whenever C/C++ supports passing arguments by value. The following
constructs allow you to pass MATLAB variables as arguments by reference
to external C/C++ functions:

• coder.ref — pass value by reference

• coder.rref — pass read-only value by reference

• coder.wref — pass write-only value by reference

These constructs offer the following benefits:

• Passing values by reference optimizes memory use.

When you pass arguments by value, MATLAB Coder passes a copy of the
value of each argument to the C/C++ function to preserve the original
values. When you pass arguments by reference, MATLAB Coder does not
copy values. The memory savings can be significant if you need to pass
large matrices to the C/C++ function.

• Passing write-only values by reference allows you to return multiple
outputs.

By using coder.wref, you can achieve the effect of returning multiple
outputs from your C/C++ function, including arrays and matrices.
Otherwise, the C/C++ function can return only a single scalar value
through its return statement.

9-3

9 Calling C/C++ Functions from Generated Code

Do not store pointers that you pass to C/C++ functions because MATLAB
Coder optimizes the code based on the assumption that you do not store the
addresses of these variables. Storing the addresses might invalidate our
optimizations leading to incorrect behavior. For example, if a MATLAB
function passes a pointer to an array using coder.ref, coder.rref, or
coder.wref, then the C/C++ function can modify the data in the array—but
you should not store the pointer for future use.

When you pass arguments by reference using coder.rref, coder.wref, and
coder.ref, the corresponding C/C++ function signature must declare these
variables as pointers of the same data type. Otherwise, the C/C++ compiler
generates a type mismatch error.

For example, suppose your MATLAB function calls an external C function
ctest:

function y = fcn()
u = pi;

y = 0;
y = coder.ceval('ctest',u);

Now suppose the C function signature is:

real32_T ctest(real_T *a)

When you compile the code, you get a type mismatch error because
coder.ceval calls ctest with an argument of type double when ctest
expects a pointer to a double-precision, floating-point value.

Match the types of arguments in coder.ceval with their counterparts in the
C function. For instance, you can fix the error in the previous example by
passing the argument by reference:

y = coder.ceval('ctest', coder.rref(u));

You can pass a reference to an element of a matrix. For example, to pass the
second element of the matrix v, you can use the following code:

y = coder.ceval('ctest', coder.ref(v(1,2)));

9-4

MATLAB® Coder™ Interface to C/C++ Code

Declaring Data
The construct coder.opaque allows you to manipulate C/C++ data that a
MATLAB function does not recognize. You can store the opaque data in a
variable or structure field and pass it to, or return it from, a C/C++ function
using coder.ceval.

Example: Declaring Opaque Data
The following example uses coder.opaque to declare a variable f as a FILE *
type.

% This example returns its own source code by using

% fopen/fread/fclose.

function buffer = filetest

%#codegen

% Declare 'f' as an opaque type 'FILE *'

f = coder.opaque('FILE *', 'NULL');

% Open file in binary mode

f = coder.ceval('fopen', cstring('filetest.m'), cstring('rb'));

% Read from file until end of file is reached and put

% contents into buffer

n = int32(1);

i = int32(1);

buffer = char(zeros(1,8192));

while n > 0

% By default, MATLAB converts all constant values

% to doubles in generated code

% so explicit type conversion to in32 is inserted.

n = coder.ceval('fread', coder.ref(buffer(i)), int32(1), ...

int32(numel(buffer)), f);

i = i + n;

end

coder.ceval('fclose',f);

buffer = strip_cr(buffer);

% Put a C termination character '\0' at the end of MATLAB string

function y = cstring(x)

9-5

9 Calling C/C++ Functions from Generated Code

y = [x char(0)];

% Remove all character 13 (CR) but keep character 10 (LF)

function buffer = strip_cr(buffer)

j = 1;

for i = 1:numel(buffer)

if buffer(i) ~= char(13)

buffer(j) = buffer(i);

j = j + 1;

end

end

buffer(i) = 0;

9-6

Calling External C/C++ Functions

Calling External C/C++ Functions

In this section...

“Workflow for Calling External C/C++ Functions” on page 9-7

“Best Practices for Calling C/C++ Code from Generated Code” on page 9-8

Workflow for Calling External C/C++ Functions
To call external C/C++ functions from generated code:

1 Write your C/C++ functions in external source files or libraries.

2 Create header files, if required.

The header file defines the data types used by the C/C++ functions that
MATLAB Coder generates in code, as described in “Mapping MATLAB
Types to C/C++” on page 9-10.

Tip One way to add these type definitions is to include the header file
tmwtypes.h, which defines all general data types supported by MATLAB.
This header file is in matlabroot/extern/include. Check the definitions
in tmwtypes.h to determine if they are compatible with your target. If not,
define these types in your own header files.

3 In your MATLAB function, add calls to coder.ceval to invoke your
external C/C++ functions.

You need one coder.ceval statement for each call to a C/C++ function.
In your coder.ceval statements, use coder.ref, coder.rref, and
coder.wref constructs as required (see “Passing Arguments by Reference
to External C/C++ Functions” on page 9-3).

4 Include the custom C/C++ functions in the build. See “Custom C/C++ Code
Integration” on page 7-12.

5 Check that there are no compilation warnings about data type mismatches.

9-7

9 Calling C/C++ Functions from Generated Code

Perform this check so that you catch type mismatches between C/C++ and
MATLAB (see “How MATLAB® Coder™ Infers C/C++ Data Types” on
page 9-10).

6 Generate code and fix errors.

7 Run your application.

Best Practices for Calling C/C++ Code from Generated
Code
The following are recommended practices when calling C/C++ code from
generated code.

• Start small. — Create a test function and learn how coder.ceval and
its related constructs work.

• Use separate files. — Create a file for each C/C++ function that you call.
Make sure that you call the C/C++ functions with suitable types.

• In a header file, declare a function prototype for each function that you call,
and include this header file in the generated code. For more information,
see “Custom C/C++ Code Integration” on page 7-12.

9-8

Returning Multiple Values from C Functions

Returning Multiple Values from C Functions
The C language restricts functions from returning multiple outputs; instead,
they return only a single, scalar value. The constructs coder.ref and
coder.wref allow MATLAB functions to exchange multiple outputs with the
external C functions that they call.

For example, suppose you write a MATLAB function foo that takes two
inputs x and y and returns three outputs a, b, and c. In MATLAB, you call
this function as follows:

[a, b, c] = foo (x, y)

If you rewrite foo as a C function, you cannot return a, b, and c through the
return statement. You can create a C function with multiple pointer type
input arguments, and pass the output parameters by reference. For example:

foo(real_T x, real_T y, real_T *a, real_T *b, real_T *c)

Then you can call the C function with multiple outputs from a MATLAB
function using coder.wref constructs:

coder.ceval ('foo', x, y, ...
coder.wref(a), coder.wref(b), coder.wref(c));

Similarly, suppose that one of the outputs a is also an input argument. In this
case, create a C function with multiple pointer type input arguments, and
pass the output parameters by reference. For example:

foo(real_T *a, real_T *b, real_T *c)

Then call the C function from a MATLAB function using coder.wref and
coder.rref constructs:

coder.ceval ('foo', coder.ref(a), coder.wref(b), coder.wref(c));

9-9

9 Calling C/C++ Functions from Generated Code

How MATLAB Coder Infers C/C++ Data Types

In this section...

“Mapping MATLAB Types to C/C++” on page 9-10

“Mapping embedded.numerictypes to C/C++” on page 9-11

“Mapping Arrays to C/C++” on page 9-12

“Mapping Complex Values to C/C++” on page 9-12

“Mapping Structures to C/C++ Structures” on page 9-13

“Mapping Strings to C/C++” on page 9-13

Mapping MATLAB Types to C/C++
The C/C++ type associated with a MATLAB variable or expression is based
on the following properties:

• Class

• Size

• Complexity

The following translation table shows the MATLAB types supported for code
generation, and how MATLAB Coder infers the generated code types.

MATLAB Type C/C++ Type C/C++ Reference
Type

int8 int8_T int8_T *

int16 int16_T int16_T *

int32 int32_T int32_T *

uint8 uint8_T uint8_T *

uint16 uint16_T uint16_T *

uint32 uint32_T uint32_T *

double real_T real_T *

single real32_T real32_T *

9-10

How MATLAB® Coder™ Infers C/C++ Data Types

MATLAB Type C/C++ Type C/C++ Reference
Type

char char char *

logical boolean_T boolean_T *

fi numericaltype also influences the C/C++ type.
Integer type varies according to the MATLAB
fixed-point type, as described in “Mapping
embedded.numerictypes to C/C++” on page 9-11.

struct Fields also affect the C/C++ type. See “Mapping
Structures to C/C++ Structures” on page 9-13 .

complex See “Mapping embedded.numerictypes to C/C++”
on page 9-11.

function handles Not supported.

Mapping embedded.numerictypes to C/C++
The following translation table shows how MATLAB Coder infers integer
types from fixed-point objects. In the first column, the fixed-point types are
specified by the Fixed-Point Toolbox function numerictype:

numerictype(signedness, word length, fraction length)

The MATLAB for code generation integer type is the next larger target word
size that can store the fixed-point value, based on its word length. The sign of
the integer type matches the sign of the fixed-point type.

embedded.numerictype C/C++ Type C/C++ Reference
Type

numerictype(1, 16, 15) int16_T int16_T *

numerictype(1, 13, 10) int16_T int16_T *

numerictype(0, 19, 15) uint32_T uint32_T *

numerictype(1, 8, 7) int8_T int8_T *

9-11

9 Calling C/C++ Functions from Generated Code

Mapping Arrays to C/C++
The following translation table shows how MATLAB Coder determines array
types and sizes in generated code. In the first column, the arrays are specified
by the MATLAB function zeros:

zeros(number of rows, number of columns, data type)

MATLAB array data is laid out in column major order.

Array C/C++ Type C/C++ Reference
Type

zeros(10, 5, 'int8') int8_T * int8_T *

zeros(5, 10, 'int8') int8_T * int8_T *

zeros(3, 7) real_T * real_T *

zeros(10, 1, 'single') real32_T * real32_T *

Mapping Complex Values to C/C++
The following translation table shows how the MATLAB Coder infers complex
values in generated code.

Complex C/C++ Type C/C++ Reference
Type

complex int8 cint8_T cint8_T *

complex int16 cint16_T cint16_T *

complex int32 cint32_T cint32_T *

complex uint8 cuint8_T cuint8_T *

complex uint16 cuint16_T cuint16_T *

complex uint32 cuint32_T cuint32_T *

complex double creal_T creal_T *

complex single creal32_T creal32_T *

9-12

How MATLAB® Coder™ Infers C/C++ Data Types

The MATLAB Coder software defines each complex value as a structure with
a real component re and an imaginary component im, as in this example
from tmwtypes.h:

typedef struct {
real32_T re;/* Real component*/
real32_T im;/* Imaginary component*/

} creal32_T;

MATLAB Coder uses the names re and im in generated code to represent the
components of complex numbers. For example, suppose you define a variable
x of type creal32_T. The generated code references the real component as
x.re and the imaginary component as x.im.

If your C/C++ library requires a different representation, you can define
your own versions of MATLAB Coder complex types, but you must use the
names re for the real components and im for the imaginary components in
your definitions.

The MATLAB Coder software represents a matrix of complex numbers as
an array of structures.

Mapping Structures to C/C++ Structures
The MATLAB Coder software translates structures to C/C++ types
field-by-field. The order of the field items is preserved as given in MATLAB.
To control the name of the generated C/C++ structure type, or provide a
definition, use the coder.cstructname function.

Note If you are not using dynamic memory allocation, arrays in structures
translate into single-dimension arrays, not pointers.

Mapping Strings to C/C++
The MATLAB Coder software translates MATLAB strings to C/C++ character
matrices. Character matrices cannot be used as substitutes for C/C++ strings
because they are not null terminated. You can terminate a MATLAB string
with a null character by appending a zero to the end of the string: ['sample

9-13

9 Calling C/C++ Functions from Generated Code

string' 0]. A single character translates to a C/C++ char type, not a C/C++
string.

Caution Failing to null-terminate your MATLAB strings might cause C/C++
code to crash without compiler errors or warnings.

9-14

A

Examples

Use this list to find examples in the documentation.

A Examples

Generating MEX Functions
“Generating a MEX Function Using the Project Interface” on page 4-6
“Generating a MEX Function at the Command Line” on page 4-13
Generating a MEX Function with Two Entry-Point Functions Using the
Project Interface on page 6-72
Example: Generating a MEX Function with Two Entry-Point Functions
at the Command Line on page 6-75

A-2

Generating Static C/C++ Libraries

Generating Static C/C++ Libraries
“Generating a C Static Library Using the Project Interface” on page 6-7
“Generating a C Static Library at the Command Line” on page 6-8

A-3

A Examples

Generating C/C++ Dynamic Libraries
“Generating a C Dynamically Linked Library (DLL) Using the Project
Interface” on page 6-9

A-4

Generating C/C++ Executables

Generating C/C++ Executables
“Generating a C Executable Using the Project Interface” on page 6-13
“Generating a C Executable at the Command Line” on page 6-15

A-5

A Examples

Specifying Inputs
“Example: Specifying a Structure as a Constant Input” on page 6-42
“Example: Specifying a Variable-Size Vector Input” on page 6-43
“Example: Specifying Properties of Primary Inputs by Example at the
Command Line” on page 6-44
“Example: Specifying Properties of Primary Fixed-Point Inputs by
Example at the Command Line” on page 6-45
“Example: Specifying Class and Size of Scalar Structure” on page 6-55
“Example: Specifying Class and Size of Structure Array” on page 6-56

A-6

Optimizing Generated Code

Optimizing Generated Code
“Limiting Copying the Body of a for-loop in Generated Code” on page 6-59
“Using Inlining in Control Flow Statements” on page 6-61
“Eliminating Redundant Copies of Function Inputs (A=foo(A))” on page
6-62
“Rewriting Logical Array Indexing as a Loop” on page 6-64

A-7

A Examples

Generating Code for Variable-Size Data
“Generating Code for a MATLAB Function That Expands a Vector in a
Loop” on page 6-101

A-8

Calling C/C++ Code from MATLAB Code

Calling C/C++ Code from MATLAB Code
“Calling a C/C++ Static Library Function from MATLAB Code” on page 7-4

A-9

A Examples

A-10

Index

IndexC
code generation report keyboard shortcuts

codegen 6-185
codegen

code generation report keyboard
shortcuts 6-185

generating code for more than one entry-point
file 6-71

global data 6-78
comments in generated code

codegen 6-176
MATLAB Coder 6-85

configuration objects
codegen 6-27

controlling run-time checks
MATLAB Coder 8-14

D
debugging run-time errors

MATLAB 5-10
design considerations

when writing MATLAB Code for code
generation 4-16

E
eliminating redundant copies of function

inputs 6-62 8-8

G
generating code for more than one entry-point file

codegen 6-71
generating traceable code

MATLAB Coder 6-85
global data

codegen 6-78

H
how to disable run-time checks

MATLAB Coder 8-15

M
MATLAB

debugging run-time errors 5-10
MATLAB code analyzer

using with MATLAB for code generation 4-4
MATLAB Coder

combining property specifications 6-54
controlling run-time checks 8-14
eliminating redundant copies of function

inputs 6-62 8-8
how to disable run-time checks 8-15
inlining functions 6-61 8-7
specifying build configuration

parameters 6-26
specifying general properties of primary

inputs 6-54
when to disable run-time checks 8-15

MATLAB for code generation
using the MATLAB code analyzer 4-4

O
optimizing generated code

unrolling for-loops 6-59 8-5

R
readability

codegen 6-176
MATLAB Coder 6-85

S
specifying build configuration parameters

codegen 6-27
MATLAB Coder 6-26

Index-1

Index

T
traceability

codegen 6-176
MATLAB Coder 6-85

V
validating code

codegen 6-176
MATLAB Coder 6-85

W
when to disable run-time checks

MATLAB Coder 8-15

Index-2

	toc
	About MATLAB Coder
	Product Description
	Key Features

	Product Overview
	When to Use MATLAB Coder
	Code Generation for Embedded Software Applications
	See Also

	Code Generation for Fixed-Point Algorithms

	Code Generation Workflow
	See Also

	Bug Reports
	Check Bug Reports for Latest Issues and Fixes

	Setting Up a MATLAB Coder Project
	MATLAB Coder Project Set Up Workflow
	Creating a New Project
	Opening an Existing Project
	Adding Files to the Project
	Specifying Properties of Primary Function Inputs in a Project
	Why You Must Specify Input Properties
	See Also

	How to Specify an Input Definition in a Project

	Autodefining Input Types
	How MATLAB Coder Autodefines Input Types
	Prerequisites for Autodefining Input Types
	How to Autodefine Input Types

	Defining Input Parameters by Example in a Project
	How to Define an Input Parameter by Example
	Specifying Input Parameters by Example
	Specifying an Enumerated Type Input Parameter by Example
	Specifying a Fixed-Point Input Parameter by Example

	Defining or Editing Input Parameter Type in a Project
	How to Define or Edit an Input Parameter Type
	Edit Size Vector Definition
	Specifying Fixed-Size Input Parameters by Type
	Specifying Variable-Size Input Parameters by Type
	Specifying an Enumerated Type Input Parameter by Type
	Specifying a Fixed-Point Input Parameter by Type

	Editing a Fixed-Point Input Parameter Type
	Modifying numerictype Properties
	Modifying fimath Properties

	Specifying Structures
	Specifying Structures by Type
	How to Rename a Field in a Structure
	How to Add a Field to a Structure
	How to Insert a Field into a Structure
	How to Remove a Field from a Structure

	Defining Constant Input Parameters in a Project
	Defining Inputs Programmatically in the MATLAB File
	Adding Global Variables in a Project
	Specifying Global Variable Type and Initial Value in a Project
	How to Specify a Global Variable Type
	Why Specify a Type Definition for Global Variables?
	Defining a Global Variable by Example
	Defining or Editing Global Variable Type
	Defining Global Variable Initial Value
	Renaming Global Variables
	Inserting Global Variables
	Removing Global Variables

	Output File Name Specification
	Command Line Alternative

	Specifying Output File Locations
	Command Line Alternative

	Selecting Output Type
	Command Line Alternative
	Changing Output Type
	Check These MATLAB Coder Project Parameters When Changing Output
	Check These Command-Line Parameters When Changing Output Type

	More About

	Preparing MATLAB Code for C/C++ Code Generation
	Preparing MATLAB Code for C/C++ Code Generation Workflow
	See Also

	Fixing Errors Detected by the Code Analyzer
	See Also

	How to Generate MEX Functions Using the MATLAB Coder Project Int
	Workflow
	Generating a MEX Function Using the Project Interface
	Generating Code Only
	When to Generate Code Only
	Configuring Project Settings
	See Also

	Building a MATLAB Coder Project
	Viewing Build Results
	Saving Build Results
	See Also

	See Also

	How to Generate MEX Functions at the Command Line
	Workflow for Generating MEX Functions at the Command Line
	Generating a MEX Function at the Command Line
	Generating MEX Functions at the Command Line Using codegen
	See Also

	Fixing Errors Detected at Code Generation Time
	See Also

	Design Considerations When Writing MATLAB Code for Code Generati
	See Also

	Running MEX Functions
	Debugging Strategies

	Testing MEX Functions in MATLAB
	Workflow for Testing MEX Functions in MATLAB
	See Also

	Why Test MEX Functions in MATLAB?
	Running MEX Functions
	How to Verify MEX Functions in a Project
	Using Test Files That Call Only MATLAB Functions
	Using Test Files That Call MEX Functions

	How to Verify MEX Functions at the Command Line
	Debugging Run-Time Errors
	Viewing Errors in the Run-Time Stack
	About the Run-Time Stack
	When to Use the Run-Time Stack

	Handling Run-Time Errors

	Generating C/C++ Code from MATLAB Code
	Code Generation Workflow
	See Also

	C/C++ Code Generation
	Specifying Custom Files to Build

	Generating C/C++ Static Libraries from MATLAB Code
	Generating a C Static Library Using the Project Interface
	Generating a C Static Library at the Command Line

	Generating C/C++ Dynamically Linked Libraries from MATLAB Code
	About Dynamic Libraries Generated by MATLAB Coder
	Generating a C Dynamically Linked Library (DLL) Using the Projec
	Generating a C Dynamic Library at the Command Line

	Generating Standalone C/C++ Executables from MATLAB Code
	Generating a C Executable Using the Project Interface
	See Also

	Generating a C Executable at the Command Line
	Specifying main Functions for C/C++ Executables
	How to Specify main Functions
	Specifying main Functions in the Project Settings Dialog Box
	Specifying main Functions at the Command Line

	Build Setting Configuration
	Output Type Specification
	Output Types
	Location of Generated Files
	Specifying the Output Type Using the MATLAB Coder Project Interf
	Specifying the Output Type at the Command Line

	Specifying a Language for Code Generation
	Specifying a Language for Code Generation in the Project Setting
	Specifying a Language for Code Generation at the Command Line

	Output File Name Specification
	Specifying Output File Name in a Project
	Command Line Alternative

	Specifying Output File Locations
	Specifying Output File Location in a Project
	Command Line Alternative

	Parameter Specification Methods
	How to Specify Build Configuration Parameters
	Specifying Build Configuration Parameters in the Project Setting
	Specifying Build Configuration Parameters at the Command Line Us
	Save a configuration object to a MAT-file and then load the MAT-
	Write a script that creates the configuration object and sets it

	Specifying Build Configuration Parameters at the Command Line Us

	Primary Function Input Specification
	Why You Must Specify Input Properties
	Properties to Specify
	Default Property Values
	Supported Classes

	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Defining Input Properties by Example at the Command Line
	Command Line Option -args
	Rules for Using the -args Option
	Specifying Constant Inputs at the Command Line
	Specifying Variable-Size Inputs at the Command Line
	Example: Specifying Properties of Primary Inputs by Example at t
	Example: Specifying Properties of Primary Fixed-Point Inputs by

	Defining Input Properties Programmatically in the MATLAB File
	How to Use assert with MATLAB Coder
	Rules for Using assert Function
	Example: Specifying General Properties of Primary Inputs
	Example: Specifying Properties of Primary Fixed-Point Inputs
	Example: Specifying Class and Size of Scalar Structure
	Example: Specifying Class and Size of Structure Array

	Speeding Up Compilation
	Generate Code Only
	In the Project Interface
	At the Command Line

	Disable Compiler Optimization
	In the Project Interface
	At the Command Line

	Code Optimization
	Unrolling for-loops
	Limiting Copying the Body of a for-loop in Generated Code

	Inlining Code
	Preventing Function Inlining
	Using Inlining in Control Flow Statements

	Eliminating Redundant Copies of Function Inputs (A=foo(A))
	Rewriting Logical Array Indexing as a Loop

	Paths and File Infrastructure Setup
	Compile Path Search Order
	Specifying Folders to Search for Custom Code
	Naming Conventions
	Reserved Prefixes
	Reserved Keywords
	Conventions for Naming Generated files

	Code Generation for More Than One Entry-Point MATLAB Function
	Advantages of Generating Code for More Than One Entry-Point Func
	Generating Code for More Than One Entry-Point Function Using the
	Generating a MEX Function with Two Entry-Point Functions Using t
	Generating a C Static Library with Two Entry-Point Functions Usi
	Generating Code for More Than One Entry-Point Function at the Co
	Example: Generating a MEX Function with Two Entry-Point Function
	Generating a C/C++ Static Library with Two Entry-Point Functions
	How to Call an Entry-Point Function in a MEX Function
	Example: Calling an Entry-Point Function in a MEX Function
	How to Call an Entry-Point Function in a C/C++ Library Function

	Code Generation for Global Data
	Code Generation Workflow
	Declaring Global Variables
	Defining Global Data
	Defining Global Data in the MATLAB Global Workspace
	Defining Global Data in a MATLAB Coder Project
	Defining Global Data at the Command Line

	Synchronizing Global Data with MATLAB
	Why Synchronize Global Data?
	When to Synchronize Global Data
	How to Synchronize Global Data

	Limitations of Using Global Data

	Generation of Traceable Code
	About Code Traceability
	Generating Traceable Code
	In the Project Settings Dialog Box
	At the Command Line

	Format of Traceability Tags
	Location of Comments in Generated Code
	Straight-Line Source Code
	If Statements
	For Statements
	While Statements
	Switch Statements

	Traceability Limitations

	Code Generation for Enumerated Types
	Code Generation for Variable-Size Data
	Enabling and Disabling Support for Variable-Size Data
	In the Project Settings Dialog Box
	At the Command Line

	Controlling Dynamic Memory Allocation
	In the Project Settings Dialog Box
	At the Command Line

	Generating Code for MATLAB Functions with Variable-Size Data
	Generating Code for a MATLAB Function That Expands a Vector in a
	About the MATLAB Function uniquetol
	Step 1: Add Compilation Directive for Code Generation
	Step 2: Address Issues Detected by the Code Analyzer
	Step 3: Generate MEX Code
	What do these command-line options mean?
	Step 4: Fix the Size Mismatch Error
	Step 5: Generate C Code
	Step 6: Change the Dynamic Memory Allocation Threshold

	Using Dynamic Memory Allocation for an "Atoms" Simulation
	Create a New Folder and Copy Relevant Files
	Run Command: Create a New Folder and Copy Relevant Files
	About the 'run_atoms' Function
	Set Up Code Generation Options
	Set Up Example Inputs
	Generate a MEX Function for Testing
	Run the MEX Function
	Run the MEX Function Again
	Generate a Standalone C Code Library
	Inspect Generated Code
	Write a C Main Function
	Create a Configuration Object for Executables
	Generate a Standalone Executable
	Run the Executable
	Fetch the State
	Render the State
	Clean Up
	Run Command: Cleanup

	Code Generation for MATLAB Classes
	How MATLAB Coder Partitions Generated Code
	Partitioning Generated Files
	How to Select the File Partitioning Method
	In the Project Settings Dialog Box
	At the Command Line

	Partitioning Generated Files with One C/C++ File Per MATLAB File
	How MATLAB Coder Partitions Entry-Point MATLAB Functions
	How MATLAB Coder Partitions Subfunctions
	How MATLAB Coder Partitions Overloaded Functions

	Generated Files and Locations
	Generated Files for MEX Targets
	Generated Files for C/C++ Static Library Targets
	Generated Files for C/C++ Dynamic Library Targets
	Generated Files for C/C++ Executable Targets
	Changing Names and Locations of Generated Files

	File Partitioning and Inlining
	Tradeoffs Between File Partitioning and Inlining
	How Disabling Inlining Affects File Partitioning
	Correlating C/C++ Code with Inlined Functions
	Modifying the Inlining Threshold

	Customizing the Post-Code-Generation Build Process
	Workflow for Customizing Post-Code-Generation Builds
	Build Information Object
	Build Information Functions
	addCompileFlags
	addDefines
	addIncludeFiles
	addIncludePaths
	addLinkFlags
	addLinkObjects
	addNonBuildFiles
	addSourceFiles
	addSourcePaths
	addTMFTokens
	findIncludeFiles
	getCompileFlags
	getDefines
	getFullFileList
	getIncludeFiles
	getIncludePaths
	getLinkFlags
	getNonBuildFiles
	getSourceFiles
	getSourcePaths
	updateFilePathsAndExtensions
	updateFileSeparator

	Programming a Post-Code-Generation Command
	Using a Post-Code-Generation Command in Your Build
	Including a Post-Code-Generation Command in the Project Settings
	Including a Post-Code-Generation Command at the Command Line
	Programming the Post-Code-Generation Command as a Script
	Programming the Post-Code-Generation Command as a Function

	Example: Programming and Using a Post-Code-Generation Command at

	Code Generation Reports
	About Code Generation Reports
	Report Generation
	Names and Locations of Code Generation Reports
	Opening Code Generation Reports
	Description of Code Generation Reports

	How to Enable Code Generation Reports
	How to Enable Code Generation Reports in the Project Settings Di
	How to Enable Code Generation Reports at the Command Line

	Viewing Your MATLAB Code in a Report
	Viewing Subfunctions
	Viewing Specializations

	Viewing Call Stack Information
	Viewing Call Stack Information on the Call stack Tab
	Viewing Call Sites in the Callers List

	Viewing Generated C/C++ Code in a Report
	Tracing Generated Code Back to MATLAB Source Code
	Navigating to C/C++ Code Source Files
	Viewing Type Definitions
	Viewing Custom Code

	Viewing the Build Summary Information
	Viewing Error and Warning Messages in a Report
	Viewing Errors and Warnings in the All Messages Tab
	Viewing Error and Warning Information in Your MATLAB Code
	Viewing Compilation and Linking Errors and Warnings

	Viewing Variables in Your MATLAB Code
	Viewing Variables in the Variables Tab
	Viewing Information About Variables and Expressions in Your MATL

	Viewing Target Build Information
	Keyboard Shortcuts for the Code Generation Report
	Report Limitations
	varargin and varargout
	Loop Unrolling
	Dead Code
	Structures
	Column Headings on Variables Tab
	Multiline Matrices

	Troubleshooting
	Runtime Stack Overflow

	Deploying Generated Code
	Calling a C Static Library Function from C Code
	Calling a C/C++ Static Library Function from MATLAB Code
	Calling Generated C/C++ Functions
	Conventions for Calling Functions in Generated Code
	How to Call C/C++ Functions from MATLAB Code
	Calling Initialize and Terminate Functions
	Calling C/C++ Functions with Multiple Outputs
	See Also

	Calling C/C++ Functions that Return Arrays
	See Also

	Using a MATLAB Coder Dynamic Library in a Simple Microsoft Visua
	Custom C/C++ Code Integration
	About Custom C/C++ Code Integration with MATLAB Coder
	Specifying Custom C/C++ Files in the Project Settings Dialog Box
	Specifying Custom C/C++ Files at the Command Line
	Specifying Custom C/C++ Files with Configuration Objects
	See Also

	Accelerating MATLAB Algorithms
	Workflow for Accelerating MATLAB Algorithms
	See Also

	How to Accelerate MATLAB Algorithms
	Modifying MATLAB Code for Acceleration
	How to Modify Your MATLAB Code for Acceleration
	Unrolling for-loops
	Limiting Copying the Body of a for-loop in Generated Code

	Inlining Code
	Preventing Function Inlining
	Using Inlining in Control Flow Statements

	Eliminating Redundant Copies of Function Inputs (A=foo(A))

	Speeding Up MATLAB Algorithms with the Basic Linear Algebra Subp
	How MATLAB Uses the BLAS Library for MEX Code Generation
	How to Use the BLAS Library for C/C++ Code Generation
	See Also

	When to Disable BLAS Library Support
	How to Disable BLAS Library Support
	Disabling BLAS Library Support in the Project Settings Dialog Bo
	Disabling BLAS Library Support at the Command Line

	Supported Compilers

	Controlling Run-Time Checks
	Types of Run-Time Checks
	When to Disable Run-Time Checks
	How to Disable Run-Time Checks
	Disabling Run-Time Checks in the Project Settings Dialog Box
	Disabling Run-Time Checks From the Command Line

	Accelerating Simulation of Bouncing Balls
	Prerequisites
	Create a New Folder and Copy Relevant Files
	Run Command: Create a New Folder and Copy Relevant Files
	About the 'run_balls' Function
	Generate the MEX Function
	Compare Results
	Clean Up
	Run Command: Cleanup

	Calling C/C++ Functions from Generated Code
	MATLAB Coder Interface to C/C++ Code
	How to Call C/C++ Code from Generated Code
	Why Call C/C++ Functions from Generated Code?
	Calling External C/C++ Functions
	Passing Arguments by Reference to External C/C++ Functions
	Declaring Data
	Example: Declaring Opaque Data

	Calling External C/C++ Functions
	Workflow for Calling External C/C++ Functions
	Best Practices for Calling C/C++ Code from Generated Code

	Returning Multiple Values from C Functions
	How MATLAB Coder Infers C/C++ Data Types
	Mapping MATLAB Types to C/C++
	Mapping embedded.numerictypes to C/C++
	Mapping Arrays to C/C++
	Mapping Complex Values to C/C++
	Mapping Structures to C/C++ Structures
	Mapping Strings to C/C++

	Examples
	Generating MEX Functions
	Generating Static C/C++ Libraries
	Generating C/C++ Dynamic Libraries
	Generating C/C++ Executables
	Specifying Inputs
	Optimizing Generated Code
	Generating Code for Variable-Size Data
	Calling C/C++ Code from MATLAB Code

	Index

	tables
	Specify properties for each field according to its class
	Global Data Synchronization Options

